These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17946039)

  • 61. Comparing electromyographic and mechanomyographic frequency-based fatigue thresholds to critical torque during isometric forearm flexion.
    Hendrix CR; Housh TJ; Camic CL; Zuniga JM; Johnson GO; Schmidt RJ
    J Neurosci Methods; 2010 Dec; 194(1):64-72. PubMed ID: 20637234
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of minimum sampling rate and signal reconstruction on surface electromyographic signals.
    Durkin JL; Callaghan JP
    J Electromyogr Kinesiol; 2005 Oct; 15(5):474-81. PubMed ID: 15935959
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Research on surface electromyographic signal decomposition based on the level of contraction force].
    Deng H; Chen X; Yao B; Lou Z; Yang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1046-51, 1077. PubMed ID: 23469528
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Surface and wire electromyographic. Recording during fatiguing exercise.
    Pease WS; Elinski MA
    Electromyogr Clin Neurophysiol; 2003; 43(5):267-71. PubMed ID: 12964253
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mechanomyographic and electromyographic responses during fatigue in humans: influence of muscle length.
    Weir JP; Ayers KM; Lacefield JF; Walsh KL
    Eur J Appl Physiol; 2000 Mar; 81(4):352-9. PubMed ID: 10664096
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Analysis of progression of fatigue conditions in biceps brachii muscles using surface electromyography signals and complexity based features.
    Karthick PA; Makaram N; Ramakrishnan S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3276-9. PubMed ID: 25570690
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Muscle fluid shift does not alter EMG global variables during sustained isometric actions.
    von Walden F; Pozzo M; Elman T; Tesch PA
    J Electromyogr Kinesiol; 2008 Oct; 18(5):849-56. PubMed ID: 17466537
    [TBL] [Abstract][Full Text] [Related]  

  • 68. EMG signal decomposition using motor unit potential train validity.
    Parsaei H; Stashuk DW
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):265-74. PubMed ID: 23033332
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rectification of the EMG signal impairs the identification of oscillatory input to the muscle.
    Neto OP; Christou EA
    J Neurophysiol; 2010 Feb; 103(2):1093-103. PubMed ID: 20032241
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The short-time Fourier transform and muscle fatigue assessment in dynamic contractions.
    MacIsaac D; Parker PA; Scott RN
    J Electromyogr Kinesiol; 2001 Dec; 11(6):439-49. PubMed ID: 11738956
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The effects of innervation zone on electromyographic amplitude and mean power frequency during incremental cycle ergometry.
    Malek MH; Coburn JW; Weir JP; Beck TW; Housh TJ
    J Neurosci Methods; 2006 Jul; 155(1):126-33. PubMed ID: 16510193
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A new method for the extraction and classification of single motor unit action potentials from surface EMG signals.
    Gazzoni M; Farina D; Merletti R
    J Neurosci Methods; 2004 Jul; 136(2):165-77. PubMed ID: 15183268
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Predicting force loss during dynamic fatiguing exercises from non-linear mapping of features of the surface electromyogram.
    Gonzalez-Izal M; Falla D; Izquierdo M; Farina D
    J Neurosci Methods; 2010 Jul; 190(2):271-8. PubMed ID: 20452376
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Wavelet frequency-temporal relative phase pattern analysis for intermuscular synchronization of dynamic surface EMG signals.
    Chan CW; Almosnino S; Morin EL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5032-5. PubMed ID: 22255469
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Excitatory drive to the alpha-motoneuron pool during a fatiguing submaximal contraction in man.
    Löscher WN; Cresswell AG; Thorstensson A
    J Physiol; 1996 Feb; 491 ( Pt 1)(Pt 1):271-80. PubMed ID: 9011619
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Temporal muscle fatigue studied via muscle conduction velocity technics and spectral analysis of the electromyographic signal].
    Macaluso GM; Pittoni C; Pavesi G; Bonanini M
    Minerva Stomatol; 1994 Sep; 43(9):383-92. PubMed ID: 7816011
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An estimation of the influence of force decrease on the mean power spectral frequency shift of the EMG during repetitive maximum dynamic knee extensions.
    Karlsson JS; Ostlund N; Larsson B; Gerdle B
    J Electromyogr Kinesiol; 2003 Oct; 13(5):461-8. PubMed ID: 12932420
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Simulation analysis of interference EMG during fatiguing voluntary contractions. Part II--changes in amplitude and spectral characteristics.
    Dimitrov GV; Arabadzhiev TI; Hogrel JY; Dimitrova NA
    J Electromyogr Kinesiol; 2008 Feb; 18(1):35-43. PubMed ID: 16963280
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Changes in motor unit behavior following isometric fatigue of the first dorsal interosseous muscle.
    McManus L; Hu X; Rymer WZ; Lowery MM; Suresh NL
    J Neurophysiol; 2015 May; 113(9):3186-96. PubMed ID: 25761952
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Analysis and simulation of changes in EMG amplitude during high-level fatiguing contractions.
    Lowery MM; O'Malley MJ
    IEEE Trans Biomed Eng; 2003 Sep; 50(9):1052-62. PubMed ID: 12943273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.