These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17946050)

  • 1. Multisite interstitial stimulation for cardiac micro-impedance measurements.
    Pollard AE; Barr RC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1572-5. PubMed ID: 17946050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac microimpedance measurement in two-dimensional models using multisite interstitial stimulation.
    Pollard AE; Barr RC
    Am J Physiol Heart Circ Physiol; 2006 May; 290(5):H1976-87. PubMed ID: 16373582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of cardiac microimpedance measurement using multisite interstitial stimulation.
    Pollard AE; Smith WM; Barr RC
    Am J Physiol Heart Circ Physiol; 2004 Dec; 287(6):H2402-11. PubMed ID: 15284069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensor spacing affects the tissue impedance spectra of rabbit ventricular epicardium.
    Waits CM; Barr RC; Pollard AE
    Am J Physiol Heart Circ Physiol; 2014 Jun; 306(12):H1660-8. PubMed ID: 24778170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring surface potential components necessary for transmembrane current computation using microfabricated arrays.
    Wiley JJ; Ideker RE; Smith WM; Pollard AE
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2468-77. PubMed ID: 16085679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear electrode arrays for stimulation and recording within cardiac tissue space constants.
    Pollard AE; Ellis CD; Smith WM
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1408-14. PubMed ID: 18390332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biophysical model for cardiac microimpedance measurements.
    Pollard AE; Barr RC
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1699-709. PubMed ID: 20363889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A solution method for the determination of cardiac potential distributions with an alternating current source.
    Johnston BM; Johnston PR; Kilpatrick D
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):223-33. PubMed ID: 18568820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of the cut surface during electrical stimulation of a cardiac wedge preparation.
    Roth BJ; Patel SG; Murdick RA
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1187-90. PubMed ID: 16761846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite volume method for modeling discontinuous electrical activation in cardiac tissue.
    Trew M; Le Grice I; Smaill B; Pullan A
    Ann Biomed Eng; 2005 May; 33(5):590-602. PubMed ID: 15981860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian analysis of fiber impedance measurements.
    Barr RC; Nolte LW; Pollard AE
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():423-9. PubMed ID: 18001980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation dynamics in anisotropic cardiac tissue via decoupling.
    Clements JC; Nenonen J; Li PK; Horácek BM
    Ann Biomed Eng; 2004 Jul; 32(7):984-90. PubMed ID: 15298436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structural framework for interpretation of four-electrode microimpedance spectra in cardiac tissue.
    Pollard AE; Barr RC
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6467-70. PubMed ID: 25571477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATX-II effects on the apparent location of M cells in a computational model of a human left ventricular wedge.
    Dos Santos RW; Otaviano Campos F; Neumann Ciuffo L; Nygren A; Giles W; Koch H
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S86-S95. PubMed ID: 16686688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetry in membrane responses to electric shocks: insights from bidomain simulations.
    Ashihara T; Trayanova NA
    Biophys J; 2004 Oct; 87(4):2271-82. PubMed ID: 15454429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrode systems for measuring cardiac impedances using optical transmembrane potential sensors and interstitial electrodes--theoretical design.
    Barr RC; Plonsey R
    IEEE Trans Biomed Eng; 2003 Aug; 50(8):925-34. PubMed ID: 12892320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoplasm resistivity of mammalian atrial myocardium determined by dielectrophoresis and impedance methods.
    Fry CH; Salvage SC; Manazza A; Dupont E; Labeed FH; Hughes MP; Jabr RI
    Biophys J; 2012 Dec; 103(11):2287-94. PubMed ID: 23283227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative simulation of excitation and body surface electrocardiogram with isotropic and anisotropic computer heart models.
    Wei D; Okazaki O; Harumi K; Harasawa E; Hosaka H
    IEEE Trans Biomed Eng; 1995 Apr; 42(4):343-57. PubMed ID: 7729834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in pacing impedance: impact of implant site and measurement method.
    Anderson SE; Skadsberg ND; Laske TG; Benditt DG; Iaizzo PA
    Pacing Clin Electrophysiol; 2007 Sep; 30(9):1076-82. PubMed ID: 17725749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of cardiac bidomain parameters from extracellular measurement: two dimensional study.
    Sadleir R; Henriquez C
    Ann Biomed Eng; 2006 Aug; 34(8):1289-303. PubMed ID: 16804743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.