BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17946073)

  • 1. An investigation into the suitability of using three electronic nose instruments for the detection and discrimination of bacteria types.
    Green GC; Chan AD; Goubran RA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1850-3. PubMed ID: 17946073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor.
    Taylor AD; Ladd J; Yu Q; Chen S; Homola J; Jiang S
    Biosens Bioelectron; 2006 Dec; 22(5):752-8. PubMed ID: 16635568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of antibody array for simultaneous detection of foodborne pathogens.
    Karoonuthaisiri N; Charlermroj R; Uawisetwathana U; Luxananil P; Kirtikara K; Gajanandana O
    Biosens Bioelectron; 2009 Feb; 24(6):1641-8. PubMed ID: 18829295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of pathogenic bacteria in food samples using highly-dispersed carbon particles.
    Chemburu S; Wilkins E; Abdel-Hamid I
    Biosens Bioelectron; 2005 Sep; 21(3):491-9. PubMed ID: 16076439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conductometric biosensor for biosecurity.
    Muhammad-Tahir Z; Alocilja EC
    Biosens Bioelectron; 2003 May; 18(5-6):813-9. PubMed ID: 12706596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples.
    Varshney M; Li Y
    Biosens Bioelectron; 2007 May; 22(11):2408-14. PubMed ID: 17045791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of microbial concentration in ice-cream using the impedance technique.
    Grossi M; Lanzoni M; Pompei A; Lazzarini R; Matteuzzi D; Riccò B
    Biosens Bioelectron; 2008 Jun; 23(11):1616-23. PubMed ID: 18353628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eight-channel ultrasonic device for non-invasive quality evaluation in packed milk.
    Elvira L; Sampedro L; Montero de Espinosa F; Matesanz J; Gómez-Ullate Y; Resa P; Echevarría FJ; Iglesias JR
    Ultrasonics; 2006 Dec; 45(1-4):92-9. PubMed ID: 16979680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lab-On-a-Chip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB).
    Yang M; Sun S; Kostov Y; Rasooly A
    Lab Chip; 2010 Apr; 10(8):1011-7. PubMed ID: 20358108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics.
    Chen Q; Wang D; Cai G; Xiong Y; Li Y; Wang M; Huo H; Lin J
    Biosens Bioelectron; 2016 Dec; 86():770-776. PubMed ID: 27476059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid electrochemical detection and identification of catalase positive micro-organisms.
    Sippy N; Luxton R; Lewis RJ; Cowell DC
    Biosens Bioelectron; 2003 May; 18(5-6):741-9. PubMed ID: 12706587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring bacterial growth by tapered fiber and changes in evanescent field.
    Maraldo D; Shankar PM; Mutharasan R
    Biosens Bioelectron; 2006 Jan; 21(7):1339-44. PubMed ID: 15913977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen.
    Alhogail S; Suaifan GARY; Zourob M
    Biosens Bioelectron; 2016 Dec; 86():1061-1066. PubMed ID: 27543841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of an electronic nose instrument to fast classification of Polish honey types.
    Dymerski T; Gębicki J; Wardencki W; Namieśnik J
    Sensors (Basel); 2014 Jun; 14(6):10709-24. PubMed ID: 24945677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medical applications of electronic nose technology.
    Thaler ER; Hanson CW
    Expert Rev Med Devices; 2005 Sep; 2(5):559-66. PubMed ID: 16293067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a flow-type antibody sensor to the detection of Escherichia coli in various foods.
    Kim N; Park IS
    Biosens Bioelectron; 2003 Aug; 18(9):1101-7. PubMed ID: 12788552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation for possible source(s) of contamination of ready-to-eat meat products with Listeria spp. and other pathogens in a meat processing plant in Trinidad.
    Gibbons IS; Adesiyun A; Seepersadsingh N; Rahaman S
    Food Microbiol; 2006 Jun; 23(4):359-66. PubMed ID: 16943025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 21st century technique for food control: electronic noses.
    Peris M; Escuder-Gilabert L
    Anal Chim Acta; 2009 Apr; 638(1):1-15. PubMed ID: 19298873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electronic nose based on coated piezoelectric quartz crystals to certify ewes' cheese and to discriminate between cheese varieties.
    Pais VF; Oliveira JA; Gomes MT
    Sensors (Basel); 2012; 12(2):1422-36. PubMed ID: 22438717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multipathogen oligonucleotide microarray for environmental and biodefense applications.
    Sergeev N; Distler M; Courtney S; Al-Khaldi SF; Volokhov D; Chizhikov V; Rasooly A
    Biosens Bioelectron; 2004 Nov; 20(4):684-98. PubMed ID: 15522583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.