BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17946073)

  • 21. One-step multiplexed detection of foodborne pathogens: Combining a quantum dot-mediated reverse assaying strategy and magnetic separation.
    Yin B; Wang Y; Dong M; Wu J; Ran B; Xie M; Joo SW; Chen Y
    Biosens Bioelectron; 2016 Dec; 86():996-1002. PubMed ID: 27498327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A bioelectronic sensor based on canine olfactory nanovesicle-carbon nanotube hybrid structures for the fast assessment of food quality.
    Park J; Lim JH; Jin HJ; Namgung S; Lee SH; Park TH; Hong S
    Analyst; 2012 Jul; 137(14):3249-54. PubMed ID: 22497005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of Escherichia coli in packaged alfalfa sprouts with an electronic nose and an artificial neural network.
    Siripatrawan U; Linz JE; Harte BR
    J Food Prot; 2006 Aug; 69(8):1844-50. PubMed ID: 16924908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving short term instability for quantitative analyses with portable electronic noses.
    Macías MM; Agudo JE; Manso AG; Orellana CJ; Velasco HM; Caballero RG
    Sensors (Basel); 2014 Jun; 14(6):10514-26. PubMed ID: 24932869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electronic nose for quality control of Colombian coffee through the detection of defects in "Cup Tests".
    Rodríguez J; Durán C; Reyes A
    Sensors (Basel); 2010; 10(1):36-46. PubMed ID: 22315525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A high density microelectrode array biosensor for detection of E. coli O157:H7.
    Radke SM; Alocilja EC
    Biosens Bioelectron; 2005 Feb; 20(8):1662-7. PubMed ID: 15626625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Meat and Fish Freshness Assessment by a Portable and Simplified Electronic Nose System (Mastersense).
    Grassi S; Benedetti S; Opizzio M; Nardo ED; Buratti S
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid prediction of deoxynivalenol contamination in wheat bran by MOS-based electronic nose and characterization of the relevant pattern of volatile compounds.
    Lippolis V; Cervellieri S; Damascelli A; Pascale M; Di Gioia A; Longobardi F; De Girolamo A
    J Sci Food Agric; 2018 Oct; 98(13):4955-4962. PubMed ID: 29577312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbiological quality of randomly selected ready-to-eat foods sampled between 2003 and 2005 in Wales, UK.
    Meldrum RJ; Smith RM; Ellis P; Garside J;
    Int J Food Microbiol; 2006 May; 108(3):397-400. PubMed ID: 16503065
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple detection of food-borne pathogenic bacteria using a novel 16S rDNA-based oligonucleotide signature chip.
    Eom HS; Hwang BH; Kim DH; Lee IB; Kim YH; Cha HJ
    Biosens Bioelectron; 2007 Jan; 22(6):845-53. PubMed ID: 16621503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous detection by PCR of Escherichia coli, Listeria monocytogenes and Salmonella typhimurium in artificially inoculated wheat grain.
    Kim J; Demeke T; Clear RM; Patrick SK
    Int J Food Microbiol; 2006 Aug; 111(1):21-5. PubMed ID: 16797761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous electrochemical magneto genosensing of foodborne bacteria based on triple-tagging multiplex amplification.
    Brandão D; Liébana S; Campoy S; Cortés MP; Alegret S; Pividori MI
    Biosens Bioelectron; 2015 Dec; 74():652-9. PubMed ID: 26201982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lessons from the organization of a proficiency testing program in food microbiology by interlaboratory comparison: analytical methods in use, impact of methods on bacterial counts and measurement uncertainty of bacterial counts.
    Augustin JC; Carlier V
    Food Microbiol; 2006 Feb; 23(1):1-38. PubMed ID: 16942983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid detection of multiple foodborne pathogens using a nanoparticle-functionalized multi-junction biosensor.
    Yamada K; Choi W; Lee I; Cho BK; Jun S
    Biosens Bioelectron; 2016 Mar; 77():137-43. PubMed ID: 26402591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feature extraction from light-scatter patterns of Listeria colonies for identification and classification.
    Bayraktar B; Banada PP; Hirleman ED; Bhunia AK; Robinson JP; Rajwa B
    J Biomed Opt; 2006; 11(3):34006. PubMed ID: 16822056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Utilization test-systems "NovaStreak" for speeded analys of contamination microorganism food products].
    Zakharova NE; Sukhanova SM; Golubenko IA
    Vopr Pitan; 2008; 77(1):48-51. PubMed ID: 18368854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Miniature sensor suitable for electronic nose applications.
    Pinnaduwage LA; Gehl AC; Allman SL; Johansson A; Boisen A
    Rev Sci Instrum; 2007 May; 78(5):055101. PubMed ID: 17552854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of the quality of postharvest rapeseed by means of an electronic nose.
    Kubiak A; Wenzl T; Ulberth F
    J Sci Food Agric; 2012 Aug; 92(10):2200-6. PubMed ID: 22368076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reagentless detection of microorganisms by intrinsic fluorescence.
    Estes C; Duncan A; Wade B; Lloyd C; Ellis W; Powers L
    Biosens Bioelectron; 2003 May; 18(5-6):511-9. PubMed ID: 12706557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards a chemiresistive sensor-integrated electronic nose: a review.
    Chiu SW; Tang KT
    Sensors (Basel); 2013 Oct; 13(10):14214-47. PubMed ID: 24152879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.