These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 17946143)
1. Estimation of tube wall compliance using pulse-echo acoustic reflectometry. Figueroa HM; Juan EJ Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2852-5. PubMed ID: 17946143 [TBL] [Abstract][Full Text] [Related]
2. The estimation of tube wall compliance using acoustic input impedance. Capper WL; Guelke RW; Bunn AE IEEE Trans Biomed Eng; 1991 Jun; 38(6):544-50. PubMed ID: 1879843 [TBL] [Abstract][Full Text] [Related]
3. Role of the mechanical properties of tracheobronchial airways in determining the respiratory resistance time course. Avanzolini G; Barbini P; Bernardi F; Cevenini G; Gnudi G Ann Biomed Eng; 2001; 29(7):575-86. PubMed ID: 11501622 [TBL] [Abstract][Full Text] [Related]
5. Shunt properties of large intrathoracic airways. Cauberghs M; Verbeken E; Van de Woestijne KP J Appl Physiol (1985); 1994 Jun; 76(6):2428-36. PubMed ID: 7928867 [TBL] [Abstract][Full Text] [Related]
6. Computer simulation tool for predicting sound propagation in air-filled tubes with acoustic impedance discontinuities. Albors GO; Kyle AM; Wodicka GR; Juan EJ Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2203-6. PubMed ID: 18002427 [TBL] [Abstract][Full Text] [Related]
7. Simulations of localized harmonic motions on a blood vessel wall induced by an acoustic radiation force used in ultrasound elastography. Heikkilä J; Karjalainen T; Vauhkonen M; Hynynen K Phys Med Biol; 2006 Sep; 51(18):4587-601. PubMed ID: 16953044 [TBL] [Abstract][Full Text] [Related]
8. Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation. Palmeri ML; McAleavey SA; Fong KL; Trahey GE; Nightingale KR IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Nov; 53(11):2065-79. PubMed ID: 17091842 [TBL] [Abstract][Full Text] [Related]
9. Tube law for the intrapulmonary airway. Elad D; Kamm RD; Shapiro AH J Appl Physiol (1985); 1988 Jul; 65(1):7-13. PubMed ID: 3403495 [TBL] [Abstract][Full Text] [Related]
10. Measuring permeability of porous materials at low frequency range via acoustic transmitted waves. Fellah ZE; Fellah M; Mitri FG; Sebaa N; Depollier C; Lauriks W Rev Sci Instrum; 2007 Nov; 78(11):114902. PubMed ID: 18052497 [TBL] [Abstract][Full Text] [Related]
11. Modelling of peak-flow wall shear stress in major airways of the lung. Green AS J Biomech; 2004 May; 37(5):661-7. PubMed ID: 15046995 [TBL] [Abstract][Full Text] [Related]
12. A multiscale analytical model of bronchial airway acoustics. Henry B; Royston TJ J Acoust Soc Am; 2017 Oct; 142(4):1774. PubMed ID: 29092575 [TBL] [Abstract][Full Text] [Related]
13. Segmental analysis of nasal cavity compliance by acoustic rhinometry. Brugel-Ribere L; Fodil R; Coste A; Larger C; Isabey D; Harf A; Louis B J Appl Physiol (1985); 2002 Jul; 93(1):304-10. PubMed ID: 12070218 [TBL] [Abstract][Full Text] [Related]
14. Elastic waves in a fluid-loaded, semi-infinite axisymmetric rod. Ai Y IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Apr; 54(4):809-22. PubMed ID: 17441590 [TBL] [Abstract][Full Text] [Related]
15. Airway narrowing in porcine bronchi with and without lung parenchyma. Noble PB; Sharma A; McFawn PK; Mitchell HW Eur Respir J; 2005 Nov; 26(5):804-11. PubMed ID: 16264040 [TBL] [Abstract][Full Text] [Related]