These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17946153)

  • 41. Nomenclature systems for FISH-painted chromosome aberrations.
    Savage JR; Tucker JD
    Mutat Res; 1996 Nov; 366(2):153-61. PubMed ID: 9001582
    [No Abstract]   [Full Text] [Related]  

  • 42. Multicolor FISHs for simultaneous detection of genes and DNA segments on human chromosomes.
    Shimizu N; Maekawa M; Asai S; Shimizu Y
    Chromosome Res; 2015 Dec; 23(4):649-62. PubMed ID: 25947045
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Image enhancement for increased dot-counting efficiency in FISH.
    Shah S
    J Microsc; 2007 Nov; 228(Pt 2):211-26. PubMed ID: 17970921
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automated detection and analysis of fluorescent in situ hybridization spots depicted in digital microscopic images of Pap-smear specimens.
    Wang X; Zheng B; Li S; Zhang R; Mulvihill JJ; Chen WR; Liu H
    J Biomed Opt; 2009; 14(2):021002. PubMed ID: 19405715
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chromosome arm-specific multicolor FISH.
    Karhu R; Ahlstedt-Soini M; Bittner M; Meltzer P; Trent JM; Isola JJ
    Genes Chromosomes Cancer; 2001 Jan; 30(1):105-9. PubMed ID: 11107184
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multicolor Karyotyping and Fluorescence In Situ Hybridization-Banding (MCB/mBAND).
    Liehr T; Othman MA; Rittscher K
    Methods Mol Biol; 2017; 1541():181-187. PubMed ID: 27910024
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On the classification of a small imbalanced cytogenetic image database.
    Lerner B; Yeshaya J; Koushnir L
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(2):204-15. PubMed ID: 17473314
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automated quantification of FISH signals in urinary cells enables the assessment of chromosomal aberration patterns characteristic for bladder cancer.
    Köhler CU; Martin L; Bonberg N; Behrens T; Deix T; Braun K; Noldus J; Jöckel KH; Erbel R; Sommerer F; Tannapfel A; Harth V; Käfferlein HU; Brüning T
    Biochem Biophys Res Commun; 2014 Jun; 448(4):467-72. PubMed ID: 24802410
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid generation of region specific probes by chromosome microdissection and their application.
    Meltzer PS; Guan XY; Burgess A; Trent JM
    Nat Genet; 1992 Apr; 1(1):24-8. PubMed ID: 1301994
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chromosome arm 20q gains and other genomic alterations in colorectal cancer metastatic to liver, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization.
    Korn WM; Yasutake T; Kuo WL; Warren RS; Collins C; Tomita M; Gray J; Waldman FM
    Genes Chromosomes Cancer; 1999 Jun; 25(2):82-90. PubMed ID: 10337990
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High resolution multicolor-banding: a new technique for refined FISH analysis of human chromosomes.
    Chudoba I; Plesch A; Lörch T; Lemke J; Claussen U; Senger G
    Cytogenet Cell Genet; 1999; 84(3-4):156-60. PubMed ID: 10393418
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A new method for detecting pericentric inversions using COD-FISH.
    Bailey SM; Meyne J; Cornforth MN; McConnell TS; Goodwin EH
    Cytogenet Cell Genet; 1996; 75(4):248-53. PubMed ID: 9067435
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Cytogenetic analysis (chromosome analysis and FISH analysis)].
    Wakui K
    Nihon Rinsho; 2005 Dec; 63 Suppl 12():162-6. PubMed ID: 16416788
    [No Abstract]   [Full Text] [Related]  

  • 54. Simultaneous detection of chromosomes X, Y, 13, 18, and 21 by fluorescence in situ hybridization in blastomeres obtained from preimplantation embryos.
    Smith SE; Toledo AA; Massey JB; Kort HI
    J Assist Reprod Genet; 1998 May; 15(5):314-9. PubMed ID: 9604767
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorescence imaging of chromosomal DNA using click chemistry.
    Ishizuka T; Liu HS; Ito K; Xu Y
    Sci Rep; 2016 Sep; 6():33217. PubMed ID: 27620982
    [TBL] [Abstract][Full Text] [Related]  

  • 56. COmbined Binary RAtio fluorescence in situ hybridiziation (COBRA-FISH): development and applications.
    Raap AK; Tanke HJ
    Cytogenet Genome Res; 2006; 114(3-4):222-6. PubMed ID: 16954657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Automated chromosome classification limitations due to image processing.
    Stanley R; Keller J; Gader P; Caldwell CW
    Biomed Sci Instrum; 1995; 31():183-8. PubMed ID: 7654959
    [TBL] [Abstract][Full Text] [Related]  

  • 58. AcroM fluorescent in situ hybridization analyses of marker chromosomes.
    Langer S; Fauth C; Rocchi M; Murken J; Speicher MR
    Hum Genet; 2001 Aug; 109(2):152-8. PubMed ID: 11511920
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multicolour interphase cytogenetics: 24 chromosome probes, 6 colours, 4 layers.
    Ioannou D; Meershoek EJ; Thornhill AR; Ellis M; Griffin DK
    Mol Cell Probes; 2011; 25(5-6):199-205. PubMed ID: 21878387
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fluorescence in situ hybridization analysis of human oocytes: advantages of a double-labeling procedure.
    Pellestor F; Anahory T; Andréo B; Régnier-Vigouroux G; Soulié JP; Baudouin M; Demaille J
    Fertil Steril; 2004 Oct; 82(4):919-22. PubMed ID: 15482769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.