These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 17946157)

  • 1. Separation of gastric electrical control activity from simultaneous MGG/EGG recordings using independent component analysis.
    Irimia A; Gallucci MR; Richards WO; Bradshaw LA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3110-3. PubMed ID: 17946157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave.
    Bradshaw LA; Irimia A; Sims JA; Gallucci MR; Palmer RL; Richards WO
    Neurogastroenterol Motil; 2006 Aug; 18(8):619-31. PubMed ID: 16918726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetogastrographic detection of gastric electrical response activity in humans.
    Irimia A; Richards WO; Bradshaw LA
    Phys Med Biol; 2006 Mar; 51(5):1347-60. PubMed ID: 16481699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What can be measured from surface electrogastrography. Computer simulations.
    Liang J; Chen JD
    Dig Dis Sci; 1997 Jul; 42(7):1331-43. PubMed ID: 9246026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface current density mapping for identification of gastric slow wave propagation.
    Bradshaw LA; Cheng LK; Richards WO; Pullan AJ
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2131-9. PubMed ID: 19403355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependent component analysis for the magnetogastrographic detection of human electrical response activity.
    Estombelo-Montesco CA; de Araujo DB; Silva Filho AC; Moraes ER; Barros AK; Wakai RT; Baffa O
    Physiol Meas; 2007 Sep; 28(9):1029-44. PubMed ID: 17827651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multichannel magnetogastrogram: a clinical marker for pediatric chronic nausea.
    Somarajan S; Muszynski ND; Olson JD; Russell AC; Walker LS; Acra SA; Bradshaw LA
    Am J Physiol Gastrointest Liver Physiol; 2022 Dec; 323(6):G562-G570. PubMed ID: 36255075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of gastric electrical activity using magnetic field measurements: a simulation study.
    Kim JH; Bradshaw LA; Pullan AJ; Cheng LK
    Ann Biomed Eng; 2010 Jan; 38(1):177-86. PubMed ID: 19774463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and deletion of motion artifacts in electrogastrogram using feature analysis and neural networks.
    Liang J; Cheung JY; Chen JD
    Ann Biomed Eng; 1997; 25(5):850-7. PubMed ID: 9300109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrogastrography: a noninvasive technique to evaluate gastric electrical activity.
    Sanmiguel CP; Mintchev MP; Bowes KL
    Can J Gastroenterol; 1998 Sep; 12(6):423-30. PubMed ID: 9784898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of conventional filtering and independent component analysis for artifact reduction in simultaneous gastric EMG and magnetogastrography from porcines.
    Irimia A; Richards WO; Bradshaw LA
    IEEE Trans Biomed Eng; 2009 Nov; 56(11):2611-8. PubMed ID: 19398400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomagnetic 3-dimensional spatial and temporal characterization of electrical activity of human stomach.
    Allescher HD; Abraham-Fuchs K; Dunkel RE; Classen M
    Dig Dis Sci; 1998 Apr; 43(4):683-93. PubMed ID: 9558020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artifact reduction in magnetogastrography using fast independent component analysis.
    Irimia A; Bradshaw LA
    Physiol Meas; 2005 Dec; 26(6):1059-73. PubMed ID: 16311453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracting quantitative information from digital electrogastrograms.
    Mintchev MP; Bowes KL
    Med Biol Eng Comput; 1996 May; 34(3):244-8. PubMed ID: 8762833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative evaluation of the dynamics of external factors influencing canine gastric electrical activity before and after uncoupling.
    Newton Price C; Mintchev MP
    J Med Eng Technol; 2002; 26(6):239-46. PubMed ID: 12490029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Deep Convolutional Neural Network Approach to Classify Normal and Abnormal Gastric Slow Wave Initiation From the High Resolution Electrogastrogram.
    Agrusa AS; Gharibans AA; Allegra AA; Kunkel DC; Coleman TP
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):854-867. PubMed ID: 31199249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Electrophysiological Propagation by Multichannel Sensors.
    Bradshaw LA; Kim JH; Somarajan S; Richards WO; Cheng LK
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1751-9. PubMed ID: 26595907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of atropine sulfate and neostigmine on gastric electrical activity in human subjects--electrogastrographic study.
    Imai K; Kitakoji H; Chihara E; Sakita M
    Hepatogastroenterology; 2008; 55(81):294-7. PubMed ID: 18507128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multiscale model of the electrophysiological basis of the human electrogastrogram.
    Du P; O'Grady G; Cheng LK; Pullan AJ
    Biophys J; 2010 Nov; 99(9):2784-92. PubMed ID: 21044575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Simulated Anatomically Accurate Investigation Into the Effects of Biodiversity on Electrogastrography.
    Calder S; O'Grady G; Cheng LK; Du P
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):868-875. PubMed ID: 31199250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.