These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17946169)

  • 1. A high-level controller for robot-assisted rehabilitation.
    Erol D; Sarkar N; Halder B
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3234-7. PubMed ID: 17946169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supervisory controller design for a robot-assisted reach-to-grasp rehabilitation task.
    Wang F; Sarkar N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4258-61. PubMed ID: 19163653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavior coordination of mobile robotics using supervisory control of fuzzy discrete event systems.
    Jayasiri A; Mann GK; Gosine RG
    IEEE Trans Syst Man Cybern B Cybern; 2011 Oct; 41(5):1224-38. PubMed ID: 21421445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic assisted rehabilitation in Virtual Reality with the L-EXOS.
    Frisoli A; Bergamasco M; Carboncini MC; Rossi B
    Stud Health Technol Inform; 2009; 145():40-54. PubMed ID: 19592785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction.
    Jarrett C; McDaid AJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):976-986. PubMed ID: 28278475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a disturbance-rejection controller for robotic-enhanced limb rehabilitation trainings.
    Madoński R; Kordasz M; Sauer P
    ISA Trans; 2014 Jul; 53(4):899-908. PubMed ID: 24168844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study.
    Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Dimbwadyo I; Carrasco L; Alves S; Gonzalez-Alted C; Gomez-Blanco A; Pons JL
    J Neuroeng Rehabil; 2017 Oct; 14(1):104. PubMed ID: 29025427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects.
    Lo HS; Xie SQ
    Med Eng Phys; 2012 Apr; 34(3):261-8. PubMed ID: 22051085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain Computer Interface based robotic rehabilitation with online modification of task speed.
    Sarac M; Koyas E; Erdogan A; Cetin M; Patoglu V
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650423. PubMed ID: 24187241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Poincare map based analysis of stroke patients' walking after a rehabilitation by a robot.
    Abedi M; Moghaddam MM; Fallah D
    Math Biosci; 2018 May; 299():73-84. PubMed ID: 29518402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.
    Ho NS; Tong KY; Hu XL; Fung KL; Wei XJ; Rong W; Susanto EA
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975340. PubMed ID: 22275545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.
    Niu J; Yang Q; Chen G; Song R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotic arm skate for stroke rehabilitation.
    Wong CK; Jordan K; King M
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975389. PubMed ID: 22275593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: exploration of patient/robot interactions and the motor recovery process.
    Duret C; Courtial O; Grosmaire AG; Hutin E
    Biomed Res Int; 2015; 2015():482389. PubMed ID: 25821804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of a pneumatic orthosis for upper extremity stroke rehabilitation.
    Wolbrecht ET; Leavitt J; Reinkensmeyer DJ; Bobrow JE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2687-93. PubMed ID: 17946132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple highly efficient non invasive EMG-based HMI.
    Vitiello N; Olcese U; Oddo CM; Carpaneto J; Micera S; Carrozza MC; Dario P
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3403-6. PubMed ID: 17945773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroencephalographic markers of robot-aided therapy in stroke patients for the evaluation of upper limb rehabilitation.
    Sale P; Infarinato F; Del Percio C; Lizio R; Babiloni C; Foti C; Franceschini M
    Int J Rehabil Res; 2015 Dec; 38(4):294-305. PubMed ID: 26317486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Greedy Assist-as-Needed Controller for Upper Limb Rehabilitation.
    Luo L; Peng L; Wang C; Hou ZG
    IEEE Trans Neural Netw Learn Syst; 2019 Nov; 30(11):3433-3443. PubMed ID: 30736008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human voluntary activity integration in the control of a standing-up rehabilitation robot: a simulation study.
    Kamnik R; Bajd T
    Med Eng Phys; 2007 Nov; 29(9):1019-29. PubMed ID: 17098459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.