These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17946181)

  • 1. Estimation of oxygen consumption for moderate exercises by using a Hammerstein model.
    Su SW; Wang L; Celler BG; Savkin AV
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3427-30. PubMed ID: 17946181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen uptake estimation in humans during exercise using a Hammerstein model.
    Su SW; Wang L; Celler BG; Savkin AV
    Ann Biomed Eng; 2007 Nov; 35(11):1898-906. PubMed ID: 17687652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Portable sensor based dynamic estimation of human oxygen uptake via nonlinear multivariable modelling.
    Su SW; Celler BG; Savkin AV; Nguyen HT; Cheng TM; Guo Y; Wang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2431-4. PubMed ID: 19163193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating oxygen uptake and energy expenditure during treadmill walking by neural network analysis of easy-to-obtain inputs.
    Beltrame T; Amelard R; Villar R; Shafiee MJ; Wong A; Hughson RL
    J Appl Physiol (1985); 2016 Nov; 121(5):1226-1233. PubMed ID: 27687561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling and control for heart rate regulation during treadmill exercise.
    Su SW; Wang L; Celler BG; Savkin AV; Guo Y
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4299-302. PubMed ID: 17946236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle.
    Hunt KJ; Munih M; Donaldson NN; Barr FM
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):998-1009. PubMed ID: 9691574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear and non-linear contributions to oxygen transport and utilization during moderate random exercise in humans.
    Beltrame T; Hughson RL
    Exp Physiol; 2017 May; 102(5):563-577. PubMed ID: 28240387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic system analysis based on oxygen uptake and hip acceleration during random over-ground walking activities.
    Beltrame T; Hughson RL
    Am J Physiol Regul Integr Comp Physiol; 2017 Jan; 312(1):R93-R100. PubMed ID: 27856415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonparametric Hammerstein model based model predictive control for heart rate regulation.
    Su SW; Huang S; Wang L; Celler BG; Savkin AV; Guo Y; Cheng T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2984-7. PubMed ID: 18002622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between heart rate and oxygen uptake during non-steady state exercise.
    Bot SD; Hollander AP
    Ergonomics; 2000 Oct; 43(10):1578-92. PubMed ID: 11083138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of handrail support on oxygen uptake during steady-state treadmill exercise.
    Berling J; Foster C; Gibson M; Doberstein S; Porcari J
    J Cardiopulm Rehabil; 2006; 26(6):391-4. PubMed ID: 17135860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy cost of treadmill walking.
    Bunc V; Dlouhá R
    J Sports Med Phys Fitness; 1997 Jun; 37(2):103-9. PubMed ID: 9239987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen uptake and heart rate kinetics during dynamic upper and lower body exercise: an investigation by time-series analysis.
    Drescher U; Koschate J; Hoffmann U
    Eur J Appl Physiol; 2015 Aug; 115(8):1665-72. PubMed ID: 25771749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the human cardiovascular response to moderate exercise: feature extraction by support vector regression.
    Wang L; Su SW; Celler BG; Chan GS; Cheng TM; Savkin AV
    Physiol Meas; 2009 Mar; 30(3):227-44. PubMed ID: 19202237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy expenditure, recovery oxygen consumption, and substrate oxidation during and after body weight resistance exercise with slow movement compared to treadmill walking.
    Nakagata T; Yamada Y; Naito H
    Physiol Int; 2018 Dec; 105(4):371-385. PubMed ID: 30587026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic linearity of VO2 responses during aerobic exercise.
    Hoffmann U; Essfeld D; Wunderlich HG; Stegemann J
    Eur J Appl Physiol Occup Physiol; 1992; 64(2):139-44. PubMed ID: 1555560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen uptake kinetics following six weeks of interval and continuous endurance exercise training - An explorative pilot study.
    Drescher U; Schefter T; Koschate J; Schiffer T; Brixius K; Schneider S; Hoffmann U
    Respir Physiol Neurobiol; 2018 Jan; 247():156-166. PubMed ID: 29024783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the modeling of breath-by-breath oxygen uptake kinetics at the onset of high-intensity exercises: simulated annealing vs. GRG2 method.
    Bernard O; Alata O; Francaux M
    J Appl Physiol (1985); 2006 Mar; 100(3):1049-58. PubMed ID: 16254071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time domain analysis of oxygen uptake during pseudorandom binary sequence exercise tests.
    Hughson RL; Cuervo LA; Patla AE; Winter DA; Xing HC; Dietrich BH; Swanson GD
    J Appl Physiol (1985); 1991 Oct; 71(4):1620-6. PubMed ID: 1757391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heart rate and metabolic responses to moderate-intensity aerobic exercise: a comparison of graded walking and ungraded jogging at a constant perceived exertion.
    Kilpatrick MW; Kraemer RR; Quigley EJ; Mears JL; Powers JM; Dedea AJ; Ferrer NF
    J Sports Sci; 2009 Mar; 27(5):509-16. PubMed ID: 19204846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.