BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 17946205)

  • 21. Augmented reality and haptic interfaces for robot-assisted surgery.
    Yamamoto T; Abolhassani N; Jung S; Okamura AM; Judkins TN
    Int J Med Robot; 2012 Mar; 8(1):45-56. PubMed ID: 22069247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling.
    Batty T; Ehrampoosh A; Shirinzadeh B; Zhong Y; Smith J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560138
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deconstructing Haptic Feedback Information in Robot-Assisted Needle Insertion in Soft Tissues.
    Ferro M; Pacchierotti C; Rossi S; Vendittelli M
    IEEE Trans Haptics; 2023; 16(4):536-542. PubMed ID: 37115838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Master-Slave Interventional Surgery Robot with Force Feedback and Collaborative Operation.
    Song Y; Li L; Tian Y; Li Z; Yin X
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050644
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo experiments of a surgical robot with vision field control for Single Port Endoscopic Surgery.
    Sekiguchi Y; Kobayashi Y; Watanabe H; Tomono Y; Noguchi T; Takahashi Y; Toyoda K; Uemura M; Ieiri S; Ohdaira T; Tomikawa M; Hashizume M; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7045-8. PubMed ID: 22255961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gaze-contingent autofocus system for robotic-assisted minimally invasive surgery.
    Clancy NT; Mylonas GP; Yang GZ; Elson DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5396-9. PubMed ID: 22255557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gaze-contingent motor channelling and haptic constraints for minimally invasive robotic surgery.
    Mylonas GP; Kwok KW; Darzi A; Yang GZ
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):676-83. PubMed ID: 18982663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using visual cues to enhance haptic feedback for palpation on virtual model of soft tissue.
    Li M; Konstantinova J; Secco EL; Jiang A; Liu H; Nanayakkara T; Seneviratne LD; Dasgupta P; Althoefer K; Wurdemann HA
    Med Biol Eng Comput; 2015 Nov; 53(11):1177-86. PubMed ID: 26018755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of visual force feedback on robot-assisted surgical task performance.
    Reiley CE; Akinbiyi T; Burschka D; Chang DC; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2008 Jan; 135(1):196-202. PubMed ID: 18179942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A telerobotic haptic system for minimally invasive stereotactic neurosurgery.
    Rossi A; Trevisani A; Zanotto V
    Int J Med Robot; 2005 Jan; 1(2):64-75. PubMed ID: 17518380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A haptic pedal for surgery assistance.
    Díaz I; Gil JJ; Louredo M
    Comput Methods Programs Biomed; 2014 Sep; 116(2):97-104. PubMed ID: 24210869
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Realization of Force Detection and Feedback Control for Slave Manipulator of Master/Slave Surgical Robot.
    Shi H; Zhang B; Mei X; Song Q
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot Arm With an Identical Twin Master.
    Singh J; Srinivasan AR; Neumann G; Kucukyilmaz A
    IEEE Trans Haptics; 2020; 13(1):246-252. PubMed ID: 32012028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterizing Limits of Vision-Based Force Feedback in Simulated Surgical Tool-Tissue Interaction.
    Huang K; Chitrakar D; Mitra R; Subedi D; Su YH
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4903-4908. PubMed ID: 33019088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Haptic feedback in robot-assisted minimally invasive surgery.
    Okamura AM
    Curr Opin Urol; 2009 Jan; 19(1):102-7. PubMed ID: 19057225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A tactile feedback hexapod operating robot for endoscopic procedures.
    Urban V; Wapler M; Weisener T; Schönmayr R
    Neurol Res; 1999 Jan; 21(1):28-30. PubMed ID: 10048050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A design of hardware haptic interface for gastrointestinal endoscopy simulation.
    Gu Y; Lee DY
    Stud Health Technol Inform; 2011; 163():199-201. PubMed ID: 21335788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formulation of wire control mechanism for surgical robot to create virtual reality environment aimed at conducting surgery inside the body.
    Suzuki N; Hattori A; Ieiri S; Tomikawa M; Kenmotsu H; Hashizume M
    Stud Health Technol Inform; 2013; 184():424-30. PubMed ID: 23400196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a StandAlone Surgical Haptic Arm.
    Jones D; Lewis A; Fischer GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2136-9. PubMed ID: 22254760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Master-slave robotic system for needle indentation and insertion.
    Shin J; Zhong Y; Gu C
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):100-105. PubMed ID: 28937302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.