These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17946309)

  • 1. Acoustic speech analysis for hypernasality detection in children.
    Castellanos G; Daza G; Sánchez L; Castrillón O; Suárez J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5507-10. PubMed ID: 17946309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model.
    Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G
    J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidirectional regression (MDR)-based features for automatic voice disorder detection.
    Muhammad G; Mesallam TA; Malki KH; Farahat M; Mahmood A; Alsulaiman M
    J Voice; 2012 Nov; 26(6):817.e19-27. PubMed ID: 23177748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels.
    Maryn Y; Corthals P; Van Cauwenberge P; Roy N; De Bodt M
    J Voice; 2010 Sep; 24(5):540-55. PubMed ID: 19883993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparison of Cepstral Peak Prominence Measures From Two Acoustic Analysis Programs.
    Watts CR; Awan SN; Maryn Y
    J Voice; 2017 May; 31(3):387.e1-387.e10. PubMed ID: 27751661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of the Acoustic Voice Quality Index in the Japanese Language.
    Hosokawa K; Barsties B; Iwahashi T; Iwahashi M; Kato C; Iwaki S; Sasai H; Miyauchi A; Matsushiro N; Inohara H; Ogawa M; Maryn Y
    J Voice; 2017 Mar; 31(2):260.e1-260.e9. PubMed ID: 27287930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic analysis of voice in bulbar amyotrophic lateral sclerosis: a systematic review and meta-analysis of studies.
    Chiaramonte R; Bonfiglio M
    Logoped Phoniatr Vocol; 2020 Dec; 45(4):151-163. PubMed ID: 31760837
    [No Abstract]   [Full Text] [Related]  

  • 8. The Influence of Native Language on Auditory-Perceptual Evaluation of Vocal Samples Completed by Brazilian and Canadian SLPs.
    Chaves CR; Campbell M; Côrtes Gama AC
    J Voice; 2017 Mar; 31(2):258.e1-258.e5. PubMed ID: 27427162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The vocal clarity of female speech-language pathology students: an exploratory study.
    Warhurst S; Madill C; McCabe P; Heard R; Yiu E
    J Voice; 2012 Jan; 26(1):63-8. PubMed ID: 21439779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using modulation spectra for voice pathology detection and classification.
    Markaki M; Stylianou Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2514-7. PubMed ID: 19964970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of the Acoustic Voice Quality Index in the Lithuanian Language.
    Uloza V; Petrauskas T; Padervinskis E; Ulozaitė N; Barsties B; Maryn Y
    J Voice; 2017 Mar; 31(2):257.e1-257.e11. PubMed ID: 27427182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-Occurrence of Hypernasality and Voice Impairment in Amyotrophic Lateral Sclerosis: Acoustic Quantification.
    Eshghi M; Connaghan KP; Gutz SE; Berry JD; Yunusova Y; Green JR
    J Speech Lang Hear Res; 2021 Dec; 64(12):4772-4783. PubMed ID: 34714698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-frequency components of normal and dysphonic voices.
    Valencia Naranjo N; Mendoza Lara E; Mateo Rodríguez I; Carballo García G
    J Voice; 1994 Jun; 8(2):157-62. PubMed ID: 8061771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Objective assessment of pediatric voice disorders with the acoustic voice quality index.
    Reynolds V; Buckland A; Bailey J; Lipscombe J; Nathan E; Vijayasekaran S; Kelly R; Maryn Y; French N
    J Voice; 2012 Sep; 26(5):672.e1-7. PubMed ID: 22632794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correspondence between an accelerometric nasal/voice amplitude ratio and listeners' direct magnitude estimations of hypernasality.
    Redenbaugh MA; Reich AR
    J Speech Hear Res; 1985 Jun; 28(2):273-81. PubMed ID: 4010257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diplophonia reappraised.
    Cavalli L; Hirson A
    J Voice; 1999 Dec; 13(4):542-56. PubMed ID: 10622520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic parameters for classification of breathiness in continuous speech according to the GRBAS scale.
    Stráník A; Čmejla R; Vokřál J
    J Voice; 2014 Sep; 28(5):653.e9-653.e17. PubMed ID: 24755168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined Use of Standard and Throat Microphones for Measurement of Acoustic Voice Parameters and Voice Categorization.
    Uloza V; Padervinskis E; Uloziene I; Saferis V; Verikas A
    J Voice; 2015 Sep; 29(5):552-9. PubMed ID: 25795349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of breathy voice source on ratings of hypernasality.
    Imatomi S
    Cleft Palate Craniofac J; 2005 Nov; 42(6):641-8. PubMed ID: 16241176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic intelligibility assessment of speakers after laryngeal cancer by means of acoustic modeling.
    Bocklet T; Riedhammer K; Nöth E; Eysholdt U; Haderlein T
    J Voice; 2012 May; 26(3):390-7. PubMed ID: 21820272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.