BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 17946331)

  • 1. Phenotypic-specific gene module discovery using a diagnostic tree and caBIG VISDA.
    Zhu Y; Wang Z; Feng Y; Xuan J; Miller DJ; Hoffman EP; Wang Y
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5767-70. PubMed ID: 17946331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. caBIG VISDA: modeling, visualization, and discovery for cluster analysis of genomic data.
    Zhu Y; Li H; Miller DJ; Wang Z; Xuan J; Clarke R; Hoffman EP; Wang Y
    BMC Bioinformatics; 2008 Sep; 9():383. PubMed ID: 18801195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VISDA: an open-source caBIG analytical tool for data clustering and beyond.
    Wang J; Li H; Zhu Y; Yousef M; Nebozhyn M; Showe M; Showe L; Xuan J; Clarke R; Wang Y
    Bioinformatics; 2007 Aug; 23(15):2024-7. PubMed ID: 17540678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Latent variable and nICA modeling of pathway gene module composite.
    Gong T; Zhu Y; Xuan J; Li H; Clarke R; Hoffman EP; Wang Y
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5872-5. PubMed ID: 17946342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration.
    Bakay M; Wang Z; Melcon G; Schiltz L; Xuan J; Zhao P; Sartorelli V; Seo J; Pegoraro E; Angelini C; Shneiderman B; Escolar D; Chen YW; Winokur ST; Pachman LM; Fan C; Mandler R; Nevo Y; Gordon E; Zhu Y; Dong Y; Wang Y; Hoffman EP
    Brain; 2006 Apr; 129(Pt 4):996-1013. PubMed ID: 16478798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ground truth based comparative study on clustering of gene expression data.
    Zhu Y; Wang Z; Miller DJ; Clarke R; Xuan J; Hoffman EP; Wang Y
    Front Biosci; 2008 May; 13():3839-49. PubMed ID: 18508478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments.
    Liu H; Tarima S; Borders AS; Getchell TV; Getchell ML; Stromberg AJ
    BMC Bioinformatics; 2005 Apr; 6():106. PubMed ID: 15850479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poisson-based self-organizing feature maps and hierarchical clustering for serial analysis of gene expression data.
    Wang H; Zheng H; Azuaje F
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(2):163-75. PubMed ID: 17473311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cluML: A markup language for clustering and cluster validity assessment of microarray data.
    Bolshakova N; Cunningham P
    Appl Bioinformatics; 2005; 4(3):211-3. PubMed ID: 16231963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ArrayCluster: an analytic tool for clustering, data visualization and module finder on gene expression profiles.
    Yoshida R; Higuchi T; Imoto S; Miyano S
    Bioinformatics; 2006 Jun; 22(12):1538-9. PubMed ID: 16606685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progeny Clustering: A Method to Identify Biological Phenotypes.
    Hu CW; Kornblau SM; Slater JH; Qutub AA
    Sci Rep; 2015 Aug; 5():12894. PubMed ID: 26267476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-based clustering for RNA-seq data.
    Si Y; Liu P; Li P; Brutnell TP
    Bioinformatics; 2014 Jan; 30(2):197-205. PubMed ID: 24191069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ClaNC: point-and-click software for classifying microarrays to nearest centroids.
    Dabney AR
    Bioinformatics; 2006 Jan; 22(1):122-3. PubMed ID: 16269418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NIPALSTREE: a new hierarchical clustering approach for large compound libraries and its application to virtual screening.
    Böcker A; Schneider G; Teckentrup A
    J Chem Inf Model; 2006; 46(6):2220-9. PubMed ID: 17125166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clustering microarray gene expression data using weighted Chinese restaurant process.
    Qin ZS
    Bioinformatics; 2006 Aug; 22(16):1988-97. PubMed ID: 16766561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting clusters of different geometrical shapes in microarray gene expression data.
    Kim DW; Lee KH; Lee D
    Bioinformatics; 2005 May; 21(9):1927-34. PubMed ID: 15647300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pvclust: an R package for assessing the uncertainty in hierarchical clustering.
    Suzuki R; Shimodaira H
    Bioinformatics; 2006 Jun; 22(12):1540-2. PubMed ID: 16595560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graph-based consensus clustering for class discovery from gene expression data.
    Yu Z; Wong HS; Wang H
    Bioinformatics; 2007 Nov; 23(21):2888-96. PubMed ID: 17872912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning Differential Module Networks Across Multiple Experimental Conditions.
    Erola P; Bonnet E; Michoel T
    Methods Mol Biol; 2019; 1883():303-321. PubMed ID: 30547406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mixture model with random-effects components for clustering correlated gene-expression profiles.
    Ng SK; McLachlan GJ; Wang K; Ben-Tovim Jones L; Ng SW
    Bioinformatics; 2006 Jul; 22(14):1745-52. PubMed ID: 16675467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.