These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 17946363)

  • 1. Detecting determinism in EEG signals using principal component analysis and surrogate data testing.
    Meghdadi AH; Fazel-Rezai R; Aghakhani Y
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6209-12. PubMed ID: 17946363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for detecting nonlinear determinism in normal and epileptic brain EEG signals.
    Meghdadi AH; Fazel-Rezai R; Aghakhani Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2008-11. PubMed ID: 18002379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting determinism in short time series, with an application to the analysis of a stationary EEG recording.
    Jeong J; Gore JC; Peterson BS
    Biol Cybern; 2002 May; 86(5):335-42. PubMed ID: 11984648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for determinism in short time series, and its application to stationary EEG.
    Jeong J; Gore JC; Peterson BS
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1374-9. PubMed ID: 12450369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid symplectic principal component analysis and central tendency measure method for detection of determinism in noisy time series with application to mechanomyography.
    Xie HB; Dokos S
    Chaos; 2013 Jun; 23(2):023131. PubMed ID: 23822496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Test for low-dimensional determinism in electroencephalograms.
    Jeong J; Kim MS; Kim SY
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):831-7. PubMed ID: 11969826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting determinism with improved sensitivity in time series: rank-based nonlinear predictability score.
    Naro D; Rummel C; Schindler K; Andrzejak RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032913. PubMed ID: 25314510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time feature extraction of P300 component using adaptive nonlinear principal component analysis.
    Turnip A; Hong KS; Jeong MY
    Biomed Eng Online; 2011 Sep; 10():83. PubMed ID: 21939560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using recurrence plot for determinism analysis of EEG recordings in genetic absence epilepsy rats.
    Ouyang G; Li X; Dang C; Richards DA
    Clin Neurophysiol; 2008 Aug; 119(8):1747-1755. PubMed ID: 18486542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of chaotic determinism in time series from randomly forced maps.
    Chon KH; Kanters JK; Cohen RJ; Holstein-Rathlou NH
    Physica D; 1997; 99():471-86. PubMed ID: 11540720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new criterion to distinguish stochastic and deterministic time series with the PoincarĂ© section and fractal dimension.
    Golestani A; Jahed Motlagh MR; Ahmadian K; Omidvarnia AH; Mozayani N
    Chaos; 2009 Mar; 19(1):013137. PubMed ID: 19335001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elman neural networks for dynamic modeling of epileptic EEG.
    Kannathal N; Puthusserypady SK; Min LC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6145-8. PubMed ID: 17945939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stochastic nonlinear autoregressive algorithm reflects nonlinear dynamics of heart-rate fluctuations.
    Armoundas AA; Ju K; Iyengar N; Kanters JK; Saul PJ; Cohen RJ; Chon KH
    Ann Biomed Eng; 2002 Feb; 30(2):192-201. PubMed ID: 11962771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractal, entropic and chaotic approaches to complex physiological time series analysis: a critical appraisal.
    Li C; Ding GH; Wu GQ; Poon CS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3429-32. PubMed ID: 19963583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for the time-varying nonlinear prediction of complex nonstationary biomedical signals.
    Faes L; Chon KH; Nollo G
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):205-9. PubMed ID: 19272876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear dynamical analysis of the neonatal EEG time series: the relationship between sleep state and complexity.
    Janjarasjitt S; Scher MS; Loparo KA
    Clin Neurophysiol; 2008 Aug; 119(8):1812-1823. PubMed ID: 18486543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification.
    Garrett D; Peterson DA; Anderson CW; Thaut MH
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):141-4. PubMed ID: 12899257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for determining the nature of time series.
    Gautama T; Mandic DP; Van Hulle MM
    IEEE Trans Biomed Eng; 2004 May; 51(5):728-36. PubMed ID: 15132498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing for intracycle determinism in pseudoperiodic time series.
    Coelho MC; Mendes EM; Aguirre LA
    Chaos; 2008 Jun; 18(2):023125. PubMed ID: 18601492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparse approximation of long-term biomedical signals for classification via dynamic PCA.
    Xie S; Jin F; Krishnan S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7167-70. PubMed ID: 22255991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.