These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17946382)

  • 1. Advances in contrast enhancement for optical coherence tomography.
    Boppart SA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():121-4. PubMed ID: 17946382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography.
    Xu C; Ye J; Marks DL; Boppart SA
    Opt Lett; 2004 Jul; 29(14):1647-9. PubMed ID: 15309847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical coherence tomography for ultrahigh resolution in vivo imaging.
    Fujimoto JG
    Nat Biotechnol; 2003 Nov; 21(11):1361-7. PubMed ID: 14595364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical probes and techniques for molecular contrast enhancement in coherence imaging.
    Boppart SA; Oldenburg AL; Xu C; Marks DL
    J Biomed Opt; 2005; 10(4):41208. PubMed ID: 16178632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles.
    Kim CS; Wilder-Smith P; Ahn YC; Liaw LH; Chen Z; Kwon YJ
    J Biomed Opt; 2009; 14(3):034008. PubMed ID: 19566301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging single chiral nanoparticles in turbid media using circular-polarization optical coherence microscopy.
    Zhang P; Mehta K; Rehman S; Chen N
    Sci Rep; 2014 May; 4():4979. PubMed ID: 24828009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon Resonant Silica-Coated Silver Nanoplates as Contrast agents for Optical Coherence Tomography.
    Meleppat RK; Prabhathan P; Keey SL; Matham MV
    J Biomed Nanotechnol; 2016 Oct; 12(10):1929-37. PubMed ID: 29360336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanocages as contrast agents for spectroscopic optical coherence tomography.
    Cang H; Sun T; Li ZY; Chen J; Wiley BJ; Xia Y; Li X
    Opt Lett; 2005 Nov; 30(22):3048-50. PubMed ID: 16315717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo.
    Kah JC; Olivo M; Chow TH; Song KS; Koh KZ; Mhaisalkar S; Sheppard CJ
    J Biomed Opt; 2009; 14(5):054015. PubMed ID: 19895117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of nanoparticles accumulation on optical properties of human normal and cancerous liver tissue in vitro estimated by OCT.
    Zhou F; Wei H; Ye X; Hu K; Wu G; Yang H; He Y; Xie S; Guo Z
    Phys Med Biol; 2015 Feb; 60(3):1385-97. PubMed ID: 25592483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common-path-based device for magnetomotive OCT noise reduction.
    Ma Z; Liu X; Yin B; Zhao Y; Liu J; Yu Y; Wang Y
    Appl Opt; 2020 Feb; 59(5):1431-1437. PubMed ID: 32225400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic optical clearing effect of tissue impregnated with hyperosmotic agents and studied with optical coherence tomography.
    He Y; Wang RK
    J Biomed Opt; 2004; 9(1):200-6. PubMed ID: 14715074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study.
    Kirillin M; Shirmanova M; Sirotkina M; Bugrova M; Khlebtsov B; Zagaynova E
    J Biomed Opt; 2009; 14(2):021017. PubMed ID: 19405730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbubble contrast enhancement of neointima after drug-eluting stent implantation: an optical coherence tomography study.
    Oka N; Kadohira T; Fujii K; Kitahara H; Fujimoto Y; Kobayashi Y
    Heart Vessels; 2019 Mar; 34(3):393-400. PubMed ID: 30187118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue perfusion modelling in optical coherence tomography.
    Stohanzlova P; Kolar R
    Biomed Eng Online; 2017 Feb; 16(1):27. PubMed ID: 28178998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging magnetically labeled cells with magnetomotive optical coherence tomography.
    Oldenburg AL; Gunther JR; Boppart SA
    Opt Lett; 2005 Apr; 30(7):747-9. PubMed ID: 15832926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography.
    Adler DC; Huang SW; Huber R; Fujimoto JG
    Opt Express; 2008 Mar; 16(7):4376-93. PubMed ID: 18542535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed optical coherence tomography: basics and applications.
    Wojtkowski M
    Appl Opt; 2010 Jun; 49(16):D30-61. PubMed ID: 20517358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization-sensitive optical coherence tomography for imaging human atherosclerosis.
    Kuo WC; Chou NK; Chou C; Lai CM; Huang HJ; Wang SS; Shyu JJ
    Appl Opt; 2007 May; 46(13):2520-7. PubMed ID: 17429466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiO
    Braz AKS; Moura DS; Gomes ASL; Ohulchanskyy TY; Chen G; Liu M; Damasco J; de Araujo RE; Prasad PN
    J Biophotonics; 2018 Apr; 11(4):e201700029. PubMed ID: 28703424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.