These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17946392)

  • 21. Estimation of Time-Varying, Intrinsic and Reflex Dynamic Joint Stiffness during Movement. Application to the Ankle Joint.
    GuarĂ­n DL; Kearney RE
    Front Comput Neurosci; 2017; 11():51. PubMed ID: 28649196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of intrinsic and reflex contributions to human ankle stiffness dynamics.
    Kearney RE; Stein RB; Parameswaran L
    IEEE Trans Biomed Eng; 1997 Jun; 44(6):493-504. PubMed ID: 9151483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Muscle, reflex and central components in the control of the ankle joint in healthy and spastic man.
    Sinkjaer T
    Acta Neurol Scand Suppl; 1997; 170():1-28. PubMed ID: 9406617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of ankle joint stiffness during passive movements--a subspace linear parameter varying approach.
    Tehrani ES; Jalaleddini K; Kearney RE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1603-6. PubMed ID: 25570279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intrinsic and reflex contributions to human ankle stiffness: variation with activation level and position.
    Mirbagheri MM; Barbeau H; Kearney RE
    Exp Brain Res; 2000 Dec; 135(4):423-36. PubMed ID: 11156307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Active stiffness of the ankle in response to inertial and elastic loads.
    Granata KP; Wilson SE; Massimini AK; Gabriel R
    J Electromyogr Kinesiol; 2004 Oct; 14(5):599-609. PubMed ID: 15301778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ankle Joint Intrinsic Dynamics is More Complex than a Mass-Spring-Damper Model.
    Sobhani Tehrani E; Jalaleddini K; Kearney RE
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1568-1580. PubMed ID: 28287979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Closed-loop system identification of ankle dynamics with compliant loads.
    Zhao Y; Kearney RE
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4919-22. PubMed ID: 18003109
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of intrinsic and reflex ankle stiffness components in stroke patients.
    Galiana L; Fung J; Kearney R
    Exp Brain Res; 2005 Sep; 165(4):422-34. PubMed ID: 15991034
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The relationship between passive ankle plantar flexion joint torque and gastrocnemius muscle and achilles tendon stiffness: implications for flexibility.
    Kawakami Y; Kanehisa H; Fukunaga T
    J Orthop Sports Phys Ther; 2008 May; 38(5):269-76. PubMed ID: 18448880
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimation of intrinsic and reflex contributions to muscle dynamics: a modeling study.
    Perreault EJ; Crago PE; Kirsch RF
    IEEE Trans Biomed Eng; 2000 Nov; 47(11):1413-21. PubMed ID: 11077734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient estimation of time-varying intrinsic and reflex stiffness.
    Ludvig D; Perreault EJ; Kearney RE
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4124-7. PubMed ID: 22255247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of neuromuscular abnormalities between upper and lower extremities in hemiparetic stroke.
    Mirbagheri MM; AliBiglou L; Thajchayapong M; Lilaonitkul T; Rymer WZ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():303-6. PubMed ID: 17946813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of ankle stiffness during postural sway.
    Lang CB; Kearney RE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4062-5. PubMed ID: 25570884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct measurement of ankle stiffness during quiet standing: implications for control modelling and clinical application.
    Casadio M; Morasso PG; Sanguineti V
    Gait Posture; 2005 Jun; 21(4):410-24. PubMed ID: 15886131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of Hammerstein systems using subspace methods with applications to ankle joint stiffness.
    Zhao Y; Kearney RE
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4367-70. PubMed ID: 19964357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subspace method decomposition and identification of the parallel-cascade model of ankle joint stiffness: theory and simulation.
    Jalaleddini K; Kearney RE
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5071-4. PubMed ID: 24110875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reflex and intrinsic changes induced by fatigue of human elbow extensor muscles.
    Zhang LQ; Rymer WZ
    J Neurophysiol; 2001 Sep; 86(3):1086-94. PubMed ID: 11535659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Linear Parameter Varying Identification of Dynamic Joint Stiffness during Time-Varying Voluntary Contractions.
    Golkar MA; Sobhani Tehrani E; Kearney RE
    Front Comput Neurosci; 2017; 11():35. PubMed ID: 28579954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of human ankle impedance during the stance phase of walking.
    Rouse EJ; Hargrove LJ; Perreault EJ; Kuiken TA
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):870-8. PubMed ID: 24760937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.