These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 17946399)

  • 1. Finite element modelling of breast biomechanics: directly calculating the reference state.
    Rajagopal V; Chung J; Nielsen PM; Nash MP
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():420-3. PubMed ID: 17946399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite Element Modelling of Breast Biomechanics: Finding a Reference aState.
    Rajagopal V; Chung J; Nielsen PM; Nash MP
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():3268-71. PubMed ID: 17282943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards tracking breast cancer across medical images using subject-specific biomechanical models.
    Rajagopal V; Lee A; Chung JH; Warren R; Highnam RP; Nielsen PM; Nash MP
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):651-8. PubMed ID: 18051114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a three-dimensional finite element model of breast mechanics.
    Rajagopal V; Nielsen PM; Nash MP
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():5080-3. PubMed ID: 17271460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite-element modeling of compression and gravity on a population of breast phantoms for multimodality imaging simulation.
    Sturgeon GM; Kiarashi N; Lo JY; Samei E; Segars WP
    Med Phys; 2016 May; 43(5):2207. PubMed ID: 27147333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nonlinear biomechanical model based registration method for aligning prone and supine MR breast images.
    Han L; Hipwell JH; Eiben B; Barratt D; Modat M; Ourselin S; Hawkes DJ
    IEEE Trans Med Imaging; 2014 Mar; 33(3):682-94. PubMed ID: 24595342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Inverse Finite Element u/p-Formulation to Predict the Unloaded State of In Vivo Biological Soft Tissues.
    Vavourakis V; Hipwell JH; Hawkes DJ
    Ann Biomed Eng; 2016 Jan; 44(1):187-201. PubMed ID: 26219402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomechanical model of mammographic compressions.
    Chung JH; Rajagopal V; Nielsen PM; Nash MP
    Biomech Model Mechanobiol; 2008 Feb; 7(1):43-52. PubMed ID: 17211616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Anthropometric-Based Subject-Specific Finite Element Model of the Human Breast for Predicting Large Deformations.
    Pianigiani S; Ruggiero L; Innocenti B
    Front Bioeng Biotechnol; 2015; 3():201. PubMed ID: 26734604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of nonrigid image registration using finite-element methods: application to breast MR images.
    Schnabel JA; Tanner C; Castellano-Smith AD; Degenhard A; Leach MO; Hose DR; Hill DL; Hawkes DJ
    IEEE Trans Med Imaging; 2003 Feb; 22(2):238-47. PubMed ID: 12716000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biomechanical breast model evaluated with respect to MRI data collected in three different positions.
    Mîra A; Carton AK; Muller S; Payan Y
    Clin Biomech (Bristol, Avon); 2018 Dec; 60():191-199. PubMed ID: 30408760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards an in-plane methodology to track breast lesions using mammograms and patient-specific finite-element simulations.
    Lapuebla-Ferri A; Cegoñino-Banzo J; Jiménez-Mocholí AJ; Del Palomar AP
    Phys Med Biol; 2017 Nov; 62(22):8720-8738. PubMed ID: 29091591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling mammographic compression of the breast.
    Chung JH; Rajagopal V; Nielsen PM; Nash MP
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):758-65. PubMed ID: 18982673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breast lesion co-localisation between X-ray and MR images using finite element modelling.
    Lee AW; Rajagopal V; Babarenda Gamage TP; Doyle AJ; Nielsen PM; Nash MP
    Med Image Anal; 2013 Dec; 17(8):1256-64. PubMed ID: 23860392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of different material models to simulate 3-d breast deformations using finite element analysis.
    Eder M; Raith S; Jalali J; Volf A; Settles M; Machens HG; Kovacs L
    Ann Biomed Eng; 2014 Apr; 42(4):843-57. PubMed ID: 24346816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of material modeling on finite element analysis of human breast biomechanics.
    Ruggiero L; Sol H; Sahli H; Adriaenssens S; Adriaenssens N
    J Appl Biomater Funct Mater; 2014 Jun; 12(1):27-34. PubMed ID: 22865575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frictional contact mechanics methods for soft materials: application to tracking breast cancers.
    Chung JH; Rajagopal V; Laursen TA; Nielsen PM; Nash MP
    J Biomech; 2008; 41(1):69-77. PubMed ID: 17727862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational simulation of breast compression based on segmented breast and fibroglandular tissues on magnetic resonance images.
    Shih TC; Chen JH; Liu D; Nie K; Sun L; Lin M; Chang D; Nalcioglu O; Su MY
    Phys Med Biol; 2010 Jul; 55(14):4153-68. PubMed ID: 20601773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.
    Wittek A; Joldes G; Couton M; Warfield SK; Miller K
    Prog Biophys Mol Biol; 2010 Dec; 103(2-3):292-303. PubMed ID: 20868706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain shift computation using a fully nonlinear biomechanical model.
    Wittek A; Kikinis R; Warfield SK; Miller K
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):583-90. PubMed ID: 16686007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.