These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 17946413)
1. A switched-capacitor neural preamplifier with an adjustable pass-band for fast recovery following stimulation. Gusmeroli R; Bonfanti A; Borghi T; Spinelli AS; Baranauskas G Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():652-5. PubMed ID: 17946413 [TBL] [Abstract][Full Text] [Related]
2. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994 [TBL] [Abstract][Full Text] [Related]
3. A 64-channel ASIC for in-vitro simultaneous recording and stimulation of neurons using microelectrode arrays. Billoint O; Rostaing JP; Charvet G; Yvert B Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6070-3. PubMed ID: 18003399 [TBL] [Abstract][Full Text] [Related]
4. Design and measurements of 64-channel ASIC for neural signal recording. Kmon P; Zoladz M; Grybos P; Szczygiel R Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():528-31. PubMed ID: 19964226 [TBL] [Abstract][Full Text] [Related]
5. A compact, low input capacitance neural recording amplifier. Ng KA; Xu YP IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):610-20. PubMed ID: 24144666 [TBL] [Abstract][Full Text] [Related]
6. A wide range charge-balancing circuit using floating-gate transistors. Hu J; Gordon C Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5696-9. PubMed ID: 18003305 [TBL] [Abstract][Full Text] [Related]
7. Design and measurements of low power multichannel chip for recording and stimulation of neural activity. Zoladz M; Kmon P; Grybos P; Szczygiel R; Kleczek R; Otfinowski P; Rauza J Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4470-4. PubMed ID: 23366920 [TBL] [Abstract][Full Text] [Related]
8. Using microelectronics technology to communicate with living cells. Heer F; Hafizovic S; Ugniwenko T; Frey U; Roscic B; Blau A; Hierlemann A Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6082-5. PubMed ID: 18003402 [TBL] [Abstract][Full Text] [Related]
9. A CMOS power-efficient low-noise current-mode front-end amplifier for neural signal recording. Wu CY; Chen WM; Kuo LT IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):107-14. PubMed ID: 23853293 [TBL] [Abstract][Full Text] [Related]
10. A low noise, non-contact capacitive cardiac sensor. Peng G; Bocko MF Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4994-7. PubMed ID: 23367049 [TBL] [Abstract][Full Text] [Related]
11. A band-tunable, multichannel amplifier for neural recording with AP/LFP separation and dual-threshold adaptive AP detector. Wu JY; Tang KT Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1847-50. PubMed ID: 22254689 [TBL] [Abstract][Full Text] [Related]
12. Instrumentation for ENG and EMG recordings in FES systems. Nikolić ZM; Popović DB; Stein RB; Kenwell Z IEEE Trans Biomed Eng; 1994 Jul; 41(7):703-6. PubMed ID: 7927392 [TBL] [Abstract][Full Text] [Related]
13. Single-chip microelectronic system to interface with living cells. Heer F; Hafizovic S; Ugniwenko T; Frey U; Franks W; Perriard E; Perriard JC; Blau A; Ziegler C; Hierlemann A Biosens Bioelectron; 2007 May; 22(11):2546-53. PubMed ID: 17097869 [TBL] [Abstract][Full Text] [Related]
14. CMOS microelectrode array for the monitoring of electrogenic cells. Heer F; Franks W; Blau A; Taschini S; Ziegler C; Hierlemann A; Baltes H Biosens Bioelectron; 2004 Sep; 20(2):358-66. PubMed ID: 15308242 [TBL] [Abstract][Full Text] [Related]
15. A low-noise low-power amplifier for implantable device for neural signal acquisition. Li MZ; Tang KT Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3806-9. PubMed ID: 19965237 [TBL] [Abstract][Full Text] [Related]
16. A low-noise preamplifier for nerve cuff electrodes. Sahin M IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):561-5. PubMed ID: 16425839 [TBL] [Abstract][Full Text] [Related]
17. Recovery of early neural spikes from stimulation electrodes using a DC-coupled low gain high resolution data acquisition system. Jung H; Kim J; Nam Y J Neurosci Methods; 2018 Jul; 304():118-125. PubMed ID: 29709657 [TBL] [Abstract][Full Text] [Related]
18. A retrofitted neural recording system with a novel stimulation IC to monitor early neural responses from a stimulating electrode. Nam Y; Brown EA; Ross JD; Blum RA; Wheeler BC; DeWeerth SP J Neurosci Methods; 2009 Mar; 178(1):99-102. PubMed ID: 19100770 [TBL] [Abstract][Full Text] [Related]
19. Analog frontend for multichannel neuronal recording system with spike and LFP separation. Perelman Y; Ginosar R J Neurosci Methods; 2006 May; 153(1):21-6. PubMed ID: 16337276 [TBL] [Abstract][Full Text] [Related]
20. Fast gain recovery rates with strong wavelength dependence in a non-linear SOA. Cleary CS; Power MJ; Schneider S; Webb RP; Manning RJ Opt Express; 2010 Dec; 18(25):25726-37. PubMed ID: 21164918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]