These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 17946449)

  • 1. Can a kinetic optimization criterion predict both arm trajectory and final arm posture?
    Wada Y; Yamanaka K; Soga Y; Tsuyuki K; Kawato M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1197-200. PubMed ID: 17946449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative examinations for multi joint arm trajectory planning--using a robust calculation algorithm of the minimum commanded torque change trajectory.
    Wada Y; Kaneko Y; Nakano E; Osu R; Kawato M
    Neural Netw; 2001 May; 14(4-5):381-93. PubMed ID: 11411627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model.
    Nakano E; Imamizu H; Osu R; Uno Y; Gomi H; Yoshioka T; Kawato M
    J Neurophysiol; 1999 May; 81(5):2140-55. PubMed ID: 10322055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of isochrony phenomenon based on the computational theory of human arm trajectory planning.
    Yokoyama H; Saito H; Kurai R; Nambu I; Wada Y
    Hum Mov Sci; 2018 Oct; 61():52-62. PubMed ID: 30015096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-Body Reaching Movements Formulated by Minimum Muscle-Tension Change Criterion.
    Kudo N; Choi K; Kagawa T; Uno Y
    Neural Comput; 2016 May; 28(5):950-69. PubMed ID: 26942751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trajectory formation based on physiological characteristics of skeletal muscles.
    Kashima T; Isurugi Y
    Biol Cybern; 1998 Jun; 78(6):413-22. PubMed ID: 9711815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics.
    Biess A; Liebermann DG; Flash T
    J Neurosci; 2007 Nov; 27(48):13045-64. PubMed ID: 18045899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model.
    Uno Y; Kawato M; Suzuki R
    Biol Cybern; 1989; 61(2):89-101. PubMed ID: 2742921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study.
    Wolpert DM; Ghahramani Z; Jordan MI
    Exp Brain Res; 1995; 103(3):460-70. PubMed ID: 7789452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements.
    Ben-Itzhak S; Karniel A
    Neural Comput; 2008 Mar; 20(3):779-812. PubMed ID: 18045017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. End-point constraints in aiming movements: effects of approach angle and speed.
    Klein Breteler MD; Gielen SC; Meulenbroek RG
    Biol Cybern; 2001 Jul; 85(1):65-75. PubMed ID: 11471841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic optimization of the sit-to-stand movement.
    Yamasaki HR; Kambara H; Koike Y
    J Appl Biomech; 2011 Nov; 27(4):306-13. PubMed ID: 21896954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic construction of the trajectory of sequential arm movements.
    Okadome T; Honda M
    Biol Cybern; 1999 Mar; 80(3):157-69. PubMed ID: 10192899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling kinematics and dynamics of human arm movements.
    Admiraal MA; Kusters MJ; Gielen SC
    Motor Control; 2004 Jul; 8(3):312-38. PubMed ID: 15322310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trajectory formation of arm movement by cascade neural network model based on minimum torque-change criterion.
    Kawato M; Maeda Y; Uno Y; Suzuki R
    Biol Cybern; 1990; 62(4):275-88. PubMed ID: 2310782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evaluation of the minimum-jerk and minimum torque-change principles at the path, trajectory, and movement-cost levels.
    Klein Breteler MD; Meulenbroek RG; Gielen SC
    Motor Control; 2002 Jan; 6(1):69-83. PubMed ID: 11890147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pick to place trajectories in human arm training environment.
    Ziherl J; Podobnik J; Sikic M; Munih M
    Technol Health Care; 2009; 17(4):323-35. PubMed ID: 19822948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimality of a kip performance on the high bar: an example of skilled goal-directed whole-body movement.
    Yamasaki T; Gotoh K; Xin X
    Hum Mov Sci; 2010 Jun; 29(3):464-82. PubMed ID: 20451277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic feedback control laws for generating natural arm movements.
    Kim D; Jang C; Park FC
    Bioinspir Biomim; 2014 Mar; 9(1):016002. PubMed ID: 24343165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of trajectory planning models for arm-reaching movements based on energy cost.
    Nishii J; Taniai Y
    Neural Comput; 2009 Sep; 21(9):2634-47. PubMed ID: 19548798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.