These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17946481)

  • 1. Effect of considering constant variance time-frequency autoregressive models for HRV analysis.
    Gaitán-Gonzalez MJ; Carrasco-Sosa S; González-Camarena R; Yanez-Suarez O
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1792-5. PubMed ID: 17946481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-varying spectrum estimation of heart rate variability signals with Kalman smoother algorithm.
    Tarvainen MP; Georgiadis S; Lipponen JA; Hakkarainen M; Karjalainen PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1-4. PubMed ID: 19963704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sampling frequency of the RR interval time series for spectral analysis of heart rate variability.
    Singh D; Vinod K; Saxena SC
    J Med Eng Technol; 2004; 28(6):263-72. PubMed ID: 15513744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-varying analysis of heart rate variability signals with a Kalman smoother algorithm.
    Tarvainen MP; Georgiadis SD; Ranta-Aho PO; Karjalainen PA
    Physiol Meas; 2006 Mar; 27(3):225-39. PubMed ID: 16462010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthonormal-basis partitioning and time-frequency representation of cardiac rhythm dynamics.
    Aysin B; Chaparro LF; Gravé I; Shusterman V
    IEEE Trans Biomed Eng; 2005 May; 52(5):878-89. PubMed ID: 15887537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Analysis of heart rate variability. Mathematical description and practical application].
    Sammito S; Böckelmann I
    Herz; 2015 Mar; 40 Suppl 1():76-84. PubMed ID: 25298003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time domain parameters can be estimated with less statistical error than frequency domain parameters in the analysis of heart rate variability.
    Kuss O; Schumann B; Kluttig A; Greiser KH; Haerting J
    J Electrocardiol; 2008; 41(4):287-91. PubMed ID: 18367200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying errors in spectral estimates of HRV due to beat replacement and resampling.
    Clifford GD; Tarassenko L
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):630-8. PubMed ID: 15825865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral analysis of heart rate variability with the autoregressive method: what model order to choose?
    Dantas EM; Sant'Anna ML; Andreão RV; Gonçalves CP; Morra EA; Baldo MP; Rodrigues SL; Mill JG
    Comput Biol Med; 2012 Feb; 42(2):164-70. PubMed ID: 22136799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QT variability and HRV interactions in ECG: quantification and reliability.
    Almeida R; Gouveia S; Rocha AP; Pueyo E; Martínez JP; Laguna P
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1317-29. PubMed ID: 16830936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis and processing of heart rate variability by time-frequency representation: quantification of the pedaling frequency modulation.
    Meste O; Blain G; Bermon S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5-8. PubMed ID: 19963448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique very low-frequency heart rate variability during deep sleep in humans.
    Togo F; Kiyono K; Struzik ZR; Yamamoto Y
    IEEE Trans Biomed Eng; 2006 Jan; 53(1):28-34. PubMed ID: 16402600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of HRV spectrogram using multiple window methods focussing on the high frequency power.
    Hansson M; Jönsson P
    Med Eng Phys; 2006 Oct; 28(8):749-61. PubMed ID: 16443384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instantaneous heart rate: should RR-intervals be resampled?
    Potter M; Kinsner W
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():277-82. PubMed ID: 19162647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale probability density function analysis: non-Gaussian and scale-invariant fluctuations of healthy human heart rate.
    Kiyono K; Struzik ZR; Aoyagi N; Yamamoto Y
    IEEE Trans Biomed Eng; 2006 Jan; 53(1):95-102. PubMed ID: 16402608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling long-term heart rate variability: an ARFIMA approach.
    Leite AS; Rocha AP; Silva ME; Costa O
    Biomed Tech (Berl); 2006 Oct; 51(4):215-9. PubMed ID: 17061942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of nonlinearity in cardiovascular variability signals using cyclostationary analysis.
    Seydnejad S
    Ann Biomed Eng; 2007 May; 35(5):744-54. PubMed ID: 17372836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A differential autoregressive modeling approach within a point process framework for non-stationary heartbeat intervals analysis.
    Chen Z; Purdon PL; Brown EN; Barbieri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3567-70. PubMed ID: 21096829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial arterial blood pressure artifact models and an evaluation of a robust blood pressure and heart rate estimator.
    Li Q; Mark RG; Clifford GD
    Biomed Eng Online; 2009 Jul; 8():13. PubMed ID: 19586547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonstationary harmonic modeling for ECG removal in surface EMG signals.
    Zivanovic M; González-Izal M
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1633-40. PubMed ID: 22453600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.