These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17946497)

  • 1. Four versus two-electrode measurement strategies for cell growing and differentiation monitoring using electrical impedance spectroscopy.
    Bragós R; Sarro E; Fontova A; Soley A; Cairó J; Bayés-Genís A; Rosell J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2106-9. PubMed ID: 17946497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance spectroscopy using maximum length sequences: application to single cell analysis.
    Gawad S; Sun T; Green NG; Morgan H
    Rev Sci Instrum; 2007 May; 78(5):054301. PubMed ID: 17552843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bipolar resistivity profiling of 3D tissue culture.
    Linderholm P; Vannod J; Barrandon Y; Renaud P
    Biosens Bioelectron; 2007 Jan; 22(6):789-96. PubMed ID: 16600586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical impedance spectroscopy measurements using a four-electrode configuration improve on-line monitoring of cell concentration in adherent animal cell cultures.
    Sarró E; Lecina M; Fontova A; Solà C; Gòdia F; Cairó JJ; Bragós R
    Biosens Bioelectron; 2012 Jan; 31(1):257-63. PubMed ID: 22061268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of three kinds of electrode-skin interfaces for electrical impedance scanning.
    Yin Y; Ji Z; Zhang W; Wang N; Fu F; Liu R; You F; Shi X; Dong X
    Ann Biomed Eng; 2010 Jun; 38(6):2032-9. PubMed ID: 20437203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate resistivity mouse brain mapping using microelectrode arrays.
    Béduer A; Joris P; Mosser S; Delattre V; Fraering PC; Renaud P
    Biosens Bioelectron; 2014 Oct; 60():143-53. PubMed ID: 24794406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of two- and four-electrode techniques to characterize blood impedance for the frequency range of 100 Hz to 100 MHz.
    Chang ZY; Pop GM; Meijer GM
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1247-9. PubMed ID: 18334424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microcavity array (MCA)-based biosensor chip for functional drug screening of 3D tissue models.
    Kloss D; Kurz R; Jahnke HG; Fischer M; Rothermel A; Anderegg U; Simon JC; Robitzki AA
    Biosens Bioelectron; 2008 May; 23(10):1473-80. PubMed ID: 18289841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of emboli in vessels using electrical impedance measurements--phantom and electrodes.
    Nebuya S; Noshiro M; Brown BH; Smallwood RH; Milnes P
    Physiol Meas; 2005 Apr; 26(2):S111-8. PubMed ID: 15798224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response characteristics of single-cell impedance sensors employed with surface-modified microelectrodes.
    Thein M; Asphahani F; Cheng A; Buckmaster R; Zhang M; Xu J
    Biosens Bioelectron; 2010 Apr; 25(8):1963-9. PubMed ID: 20176469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip electrical impedance tomography for imaging biological cells.
    Sun T; Tsuda S; Zauner KP; Morgan H
    Biosens Bioelectron; 2010 Jan; 25(5):1109-15. PubMed ID: 19850464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of electric cell-substrate impedance sensing to assess in vitro cytotoxicity.
    Opp D; Wafula B; Lim J; Huang E; Lo JC; Lo CM
    Biosens Bioelectron; 2009 Apr; 24(8):2625-9. PubMed ID: 19230649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell culture monitoring by impedance mapping using a multielectrode scanning impedance spectroscopy system (CellMap).
    Rahman AR; Register J; Vuppala G; Bhansali S
    Physiol Meas; 2008 Jun; 29(6):S227-39. PubMed ID: 18544796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impedance characterization and modeling of electrodes for biomedical applications.
    Franks W; Schenker I; Schmutz P; Hierlemann A
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1295-302. PubMed ID: 16041993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS).
    Price DT; Rahman AR; Bhansali S
    Biosens Bioelectron; 2009 Mar; 24(7):2071-6. PubMed ID: 19101134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of composite electrode-tissue impedance.
    Robinson RL; Davidson JL; Wright P; Pomfrett CJ; McCann H
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1171-4. PubMed ID: 19162873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impedance analysis of cultured cells: a mean-field electrical response model for electric cell-substrate impedance sensing technique.
    Urdapilleta E; Bellotti M; Bonetto FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041908. PubMed ID: 17155097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimum design of electrode structure and parameters in electrical impedance tomography.
    Yan W; Hong S; Chaoshi R
    Physiol Meas; 2006 Mar; 27(3):291-306. PubMed ID: 16462015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of a virus electrode for measurement of prostate specific membrane antigen.
    Diaz JE; Yang LM; Lamboy JA; Penner RM; Weiss GA
    Methods Mol Biol; 2009; 504():255-74. PubMed ID: 19159102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical impedance characterization of cell growth on interdigitated microelectrode array.
    Lee GH; Pyun JC; Cho S
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8342-6. PubMed ID: 25958525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.