These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 17946512)
21. An ankle-foot orthosis powered by artificial pneumatic muscles. Ferris DP; Czerniecki JM; Hannaford B J Appl Biomech; 2005 May; 21(2):189-97. PubMed ID: 16082019 [TBL] [Abstract][Full Text] [Related]
22. Biorobotic investigation on the muscle structure of an octopus tentacle. Mazzolai B; Laschi C; Cianchetti M; Patanè F; Bassi-Luciani L; Izzo I; Dario P Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1471-4. PubMed ID: 18002244 [TBL] [Abstract][Full Text] [Related]
23. Controlling legs for locomotion-insights from robotics and neurobiology. Buschmann T; Ewald A; von Twickel A; Büschges A Bioinspir Biomim; 2015 Jun; 10(4):041001. PubMed ID: 26119450 [TBL] [Abstract][Full Text] [Related]
24. Characterization of a novel two-finger variable reluctance gripper. Chan KK; Cheung NC ISA Trans; 2005 Apr; 44(2):177-85. PubMed ID: 15868857 [TBL] [Abstract][Full Text] [Related]
25. A cellular control architecture for compliant artificial muscles. Odhner LU; Ueda J; Asada HH Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2730-3. PubMed ID: 17946978 [TBL] [Abstract][Full Text] [Related]
26. A light weight compliant hand mechanism with high degrees of freedom. Potratz J; Yang J; Abdel-Malek K; Peña Pitarch E; Grosland N J Biomech Eng; 2005 Nov; 127(6):934-45. PubMed ID: 16438230 [TBL] [Abstract][Full Text] [Related]
27. Anthropomorphic finger antagonistically actuated by SMA plates. Engeberg ED; Dilibal S; Vatani M; Choi JW; Lavery J Bioinspir Biomim; 2015 Aug; 10(5):056002. PubMed ID: 26292164 [TBL] [Abstract][Full Text] [Related]
28. A Novel Soft Pneumatic Artificial Muscle with High-Contraction Ratio. Han K; Kim NH; Shin D Soft Robot; 2018 Oct; 5(5):554-566. PubMed ID: 29924698 [TBL] [Abstract][Full Text] [Related]
29. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator. Kim SH; Shin K; Hashi S; Ishiyama K Bioinspir Biomim; 2012 Sep; 7(3):036007. PubMed ID: 22550128 [TBL] [Abstract][Full Text] [Related]
30. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. Ao D; Song R; Gao J IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719 [TBL] [Abstract][Full Text] [Related]
31. An artificial muscle actuator for biomimetic underwater propulsors. Yim W; Lee J; Kim KJ Bioinspir Biomim; 2007 Jun; 2(2):S31-41. PubMed ID: 17671327 [TBL] [Abstract][Full Text] [Related]
32. Bioinspired actuation of the eyeballs of an android robotic face: concept and preliminary investigations. Carpi F; De Rossi D Bioinspir Biomim; 2007 Jun; 2(2):S50-63. PubMed ID: 17671329 [TBL] [Abstract][Full Text] [Related]
33. Stretch reflex improves rolling stability during hopping of a decerebrate biped system. Rosendo A; Liu X; Shimizu M; Hosoda K Bioinspir Biomim; 2015 Jan; 10(1):016008. PubMed ID: 25599138 [TBL] [Abstract][Full Text] [Related]
34. Determining the influence of muscle operating length on muscle performance during frog swimming using a bio-robotic model. Clemente CJ; Richards C Bioinspir Biomim; 2012 Sep; 7(3):036018. PubMed ID: 22677569 [TBL] [Abstract][Full Text] [Related]
35. Real-time myoprocessors for a neural controlled powered exoskeleton arm. Cavallaro EE; Rosen J; Perry JC; Burns S IEEE Trans Biomed Eng; 2006 Nov; 53(11):2387-96. PubMed ID: 17073345 [TBL] [Abstract][Full Text] [Related]
36. Energetic analysis and experiments of earthworm-like locomotion with compliant surfaces. Zarrouk D; Sharf I; Shoham M Bioinspir Biomim; 2016 Feb; 11(1):014001. PubMed ID: 26845111 [TBL] [Abstract][Full Text] [Related]
37. Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle. Schmitt S; Haeufle DF; Blickhan R; Günther M Bioinspir Biomim; 2012 Sep; 7(3):036022. PubMed ID: 22728876 [TBL] [Abstract][Full Text] [Related]
38. A micro creeping robot for colonoscopy based on the earthworm. Zuo J; Yan G; Gao Z J Med Eng Technol; 2005; 29(1):1-7. PubMed ID: 15764374 [TBL] [Abstract][Full Text] [Related]
39. On extracting design principles from biology: II. Case study-the effect of knee direction on bipedal robot running efficiency. Haberland M; Kim S Bioinspir Biomim; 2015 Feb; 10(1):016011. PubMed ID: 25643285 [TBL] [Abstract][Full Text] [Related]
40. Turtle mimetic soft robot with two swimming gaits. Song SH; Kim MS; Rodrigue H; Lee JY; Shim JE; Kim MC; Chu WS; Ahn SH Bioinspir Biomim; 2016 May; 11(3):036010. PubMed ID: 27145061 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]