BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17946524)

  • 1. A space-time-frequency analysis approach for the classification motor imagery EEG recordings in a brain computer interface task.
    Ince NF; Tewfik AH; Arica S
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2581-4. PubMed ID: 17946524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
    Ince NF; Arica S; Tewfik A
    J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new discriminative common spatial pattern method for motor imagery brain-computer interfaces.
    Thomas KP; Guan C; Lau CT; Vinod AP; Ang KK
    IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2730-3. PubMed ID: 19605314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of EEG with structural feature dictionaries in a brain computer interface.
    Göksu F; Ince NF; Tadipatri VA; Tewfik AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1001-4. PubMed ID: 19162827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task-irrelevant alpha component analysis in motor imagery based brain computer interface.
    Lou B; Hong B; Gao S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1021-4. PubMed ID: 19162832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An adaptive filter bank for motor imagery based Brain Computer Interface.
    Thomas KP; Guan C; Tong LC; Prasad VA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1104-7. PubMed ID: 19162856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A frequency-temporal-spatial method for motor-related electroencephalography pattern recognition by comprehensive feature optimization.
    Wu B; Yang F; Zhang J; Wang Y; Zheng X; Chen W
    Comput Biol Med; 2012 Apr; 42(4):353-63. PubMed ID: 22348825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the performance of motor imagery EEG classification using phase features.
    Hsu WY
    Clin EEG Neurosci; 2015 Apr; 46(2):113-8. PubMed ID: 25404753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creating a nonparametric brain-computer interface with neural time-series prediction preprocessing.
    Coyle D; McGinnity TM; Prasad G
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2183-6. PubMed ID: 17946502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of motor imagery BCI using multivariate empirical mode decomposition.
    Park C; Looney D; Naveed ur Rehman ; Ahrabian A; Mandic DP
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):10-22. PubMed ID: 23204288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bispectrum-based feature extraction technique for devising a practical brain-computer interface.
    Shahid S; Prasad G
    J Neural Eng; 2011 Apr; 8(2):025014. PubMed ID: 21436530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-class filter bank common spatial pattern for four-class motor imagery BCI.
    Chin ZY; Ang KK; Wang C; Guan C; Zhang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():571-4. PubMed ID: 19963466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of feature and channel selection on EEG classification.
    Al-Ani A; Al-Sukker A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2171-4. PubMed ID: 17946093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Channel selection by genetic algorithms for classifying single-trial ECoG during motor imagery.
    Wei Q; Tu W
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():624-7. PubMed ID: 19162733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis.
    Kamousi B; Liu Z; He B
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):166-71. PubMed ID: 16003895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of motor imagery by means of cortical current density estimation and Von Neumann entropy.
    Kamousi B; Amini AN; He B
    J Neural Eng; 2007 Jun; 4(2):17-25. PubMed ID: 17409476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A semi-supervised SVM learning algorithm for joint feature extraction and classification in brain computer interfaces.
    Li Y; Guan C
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2570-3. PubMed ID: 17945723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature extraction and subset selection for classifying single-trial ECoG during motor imagery.
    Wei Q; Gao X; Gao S
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1589-92. PubMed ID: 17946051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous EEG classification during motor imagery--simulation of an asynchronous BCI.
    Townsend G; Graimann B; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):258-65. PubMed ID: 15218939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain-computer interface.
    Wang T; He B
    J Neural Eng; 2004 Mar; 1(1):1-7. PubMed ID: 15876616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.