These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17946606)

  • 1. Synchronization index of neural spike trains in response to simulated vowel signal stimuli in the presence of a pseudo-spontaneous activity.
    Wada Y; Mino H
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4159-62. PubMed ID: 17946606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encoding of information into neural spike trains in an auditory nerve fiber model with electric stimuli in the presence of a pseudospontaneous activity.
    Mino H
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):360-9. PubMed ID: 17355047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Information Rate of Neural Spike Trains in Response to Sinusoidal Electric Stimuli in the Presence of a Pseudo-spontaneous Activity.
    Mino H
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2006():417-20. PubMed ID: 17282203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Information rate of neural spike trains in response to electric stimuli.
    Mino H
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4603-6. PubMed ID: 17271332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the rates of pseudo-spontaneous spikes generated by electric stimuli on information transmission in an auditory nerve fiber model.
    Kumsa P; Mino H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5246-9. PubMed ID: 24110919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation.
    Mino H; Rubinstein JT; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):13-20. PubMed ID: 14723489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of neural refractoriness on spatio-temporal variability in spike initiations with Electrical stimulation.
    Mino H; Rubinstein JT
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):273-80. PubMed ID: 17009486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural masking by sub-threshold electric stimuli: animal and computer model results.
    Miller CA; Woo J; Abbas PJ; Hu N; Robinson BK
    J Assoc Res Otolaryngol; 2011 Apr; 12(2):219-32. PubMed ID: 21080206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic population model for electrical stimulation of the auditory nerve.
    Imennov NS; Rubinstein JT
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2493-501. PubMed ID: 19304476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes across time in the temporal responses of auditory nerve fibers stimulated by electric pulse trains.
    Miller CA; Hu N; Zhang F; Robinson BK; Abbas PJ
    J Assoc Res Otolaryngol; 2008 Mar; 9(1):122-37. PubMed ID: 18204987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of the electrically stimulated cochlear neuron: modeling adaptation to trains of electric pulses.
    Woo J; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2009 May; 56(5):1348-59. PubMed ID: 19473930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of I(h) and I(KLT) on the response of the auditory nerve to electrical stimulation in a stochastic Hodgkin-Huxley model.
    Negm MH; Bruce IC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5539-42. PubMed ID: 19163972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of stochastic sodium channels on extracellular excitation of myelinated nerve fibers.
    Mino H; Grill WM
    IEEE Trans Biomed Eng; 2002 Jun; 49(6):527-32. PubMed ID: 12046697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of spike trains in auditory nerves with self-exciting point processes of the von Mises type.
    Mino H
    Biol Cybern; 2019 Jun; 113(3):347-356. PubMed ID: 31004189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dependence of auditory nerve rate adaptation on electric stimulus parameters, electrode position, and fiber diameter: a computer model study.
    Woo J; Miller CA; Abbas PJ
    J Assoc Res Otolaryngol; 2010 Jun; 11(2):283-96. PubMed ID: 20033248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Information transmission in hippocampal CA1 neuron models in the presence of poisson shot noise: the case of periodic sub-threshold spike trains.
    Kawaguchi M; Mino H; Durand DM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4196-9. PubMed ID: 17945831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axonal coding of action potentials in demyelinated nerve fibers.
    Shrager P
    Brain Res; 1993 Aug; 619(1-2):278-90. PubMed ID: 8397054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variations in excitability of single human motor axons, related to stochastic properties of nodal sodium channels.
    Hales JP; Lin CS; Bostock H
    J Physiol; 2004 Sep; 559(Pt 3):953-64. PubMed ID: 15272032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of interpulse interval on stochastic properties of electrical stimulation: models and measurements.
    Matsuoka AJ; Rubinstein JT; Abbas PJ; Miller CA
    IEEE Trans Biomed Eng; 2001 Apr; 48(4):416-24. PubMed ID: 11322529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impulse propagation along a myelinated vertebrate axon lacking nodes of Ranvier.
    Funch PG; Faber DS
    Brain Res; 1980 May; 190(1):261-7. PubMed ID: 7378739
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.