These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17946658)

  • 21. Sensing surrounding 3-D space for navigation of the blind. A prototype system featuring vibration arrays and data fusion provides a near real-time feedback.
    Bourbakis N
    IEEE Eng Med Biol Mag; 2008; 27(1):49-55. PubMed ID: 18270050
    [No Abstract]   [Full Text] [Related]  

  • 22. Stereo camera based virtual cane system with identifiable distance tactile feedback for the blind.
    Kim D; Kim K; Lee S
    Sensors (Basel); 2014 Jun; 14(6):10412-31. PubMed ID: 24932864
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An oral tactile interface for blind navigation.
    Tang H; Beebe DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):116-23. PubMed ID: 16562639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of extended sensory range via the EyeCane sensory substitution device on the characteristics of visionless virtual navigation.
    Maidenbaum S; Levy-Tzedek S; Chebat DR; Namer-Furstenberg R; Amedi A
    Multisens Res; 2014; 27(5-6):379-97. PubMed ID: 25693302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic visual to tactile translation--Part II: Evaluation of the TACTile Image Creation System.
    Way TP; Barner KE
    IEEE Trans Rehabil Eng; 1997 Mar; 5(1):95-105. PubMed ID: 9086390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Indoor navigation by people with visual impairment using a digital sign system.
    Legge GE; Beckmann PJ; Tjan BS; Havey G; Kramer K; Rolkosky D; Gage R; Chen M; Puchakayala S; Rangarajan A
    PLoS One; 2013; 8(10):e76783. PubMed ID: 24116156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cognitive map formation in the blind is enhanced by three-dimensional tactile information.
    Bleau M; van Acker C; Martiniello N; Nemargut JP; Ptito M
    Sci Rep; 2023 Jun; 13(1):9736. PubMed ID: 37322150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partial recovery of visual-spatial remapping of touch after restoring vision in a congenitally blind man.
    Ley P; Bottari D; Shenoy BH; Kekunnaya R; Röder B
    Neuropsychologia; 2013 May; 51(6):1119-23. PubMed ID: 23499851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A platform for combining virtual reality experiments with functional magnetic resonance imaging.
    Mraz R; Hong J; Quintin G; Staines WR; McIlroy WE; Zakzanis KK; Graham SJ
    Cyberpsychol Behav; 2003 Aug; 6(4):359-68. PubMed ID: 14511447
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cognitive and Affective Assessment of Navigation and Mobility Tasks for the Visually Impaired via Electroencephalography and Behavioral Signals.
    Lupu RG; Mitruț O; Stan A; Ungureanu F; Kalimeri K; Moldoveanu A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial knowledge in blind and sighted children.
    Morrongiello BA; Timney B; Humphrey GK; Anderson S; Skory C
    J Exp Child Psychol; 1995 Apr; 59(2):211-33. PubMed ID: 7722435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic visual to tactile translation--Part I: Human factors, access methods, and image manipulation.
    Way TP; Barner KE
    IEEE Trans Rehabil Eng; 1997 Mar; 5(1):81-94. PubMed ID: 9086389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer access for persons who are blind or visually impaired: human factors issues.
    Griffith D
    Hum Factors; 1990 Aug; 32(4):467-75. PubMed ID: 2150068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of an audio-based virtual gaming environment to assist with navigation skills in the blind.
    Connors EC; Yazzolino LA; Sánchez J; Merabet LB
    J Vis Exp; 2013 Mar; (73):. PubMed ID: 23568182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implicit short-lived motor representations of space in brain damaged and healthy subjects.
    Rossetti Y
    Conscious Cogn; 1998 Sep; 7(3):520-58. PubMed ID: 9787059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Network QoS Impact on Spatial Perception through Sensory Substitution in Navigation Systems for Blind and Visually Impaired People.
    Real S; Araujo A
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proposal for SVG2DOT: -  An Interoperable Tactile Graphics Creation System Using SVG outputs from Inkscape.
    Minatani K
    Stud Health Technol Inform; 2015; 217():506-11. PubMed ID: 26294520
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Navigation with a sensory substitution device in congenitally blind individuals.
    Chebat DR; Schneider FC; Kupers R; Ptito M
    Neuroreport; 2011 May; 22(7):342-7. PubMed ID: 21451425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Touch-screen technology for the dynamic display of -2D spatial information without vision: promise and progress.
    Klatzky RL; Giudice NA; Bennett CR; Loomis JM
    Multisens Res; 2014; 27(5-6):359-78. PubMed ID: 25693301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing the mental representations of space used by blind pedestrians, based on an image schemata model.
    Yaagoubi R; Edwards G; Badard T; Mostafavi MA
    Cogn Process; 2012 Nov; 13(4):333-47. PubMed ID: 22923043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.