These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 17946672)

  • 1. A simple model implementation to measure breath by breath the VO2 and VCO2 by the indirect calorimetry technique.
    Cadena M; Sacristan E; Infante O; Rodriguez F; Escalante B; Pérez P; Azpiroz J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5084-7. PubMed ID: 17946672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic variability analysis using a mixing chamber-breath by breath based indirect calorimeter and the clino-ortho maneuver.
    Cadena M; Infante O; Escalante B; Sacristan E; Rodriguez FJ; Medel LH; Azpiroz J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4652-5. PubMed ID: 18003043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of face mask, head hood, and canopy for breath sampling in flow-through indirect calorimetry to measure oxygen consumption and carbon dioxide production of preterm infants < 1500 grams.
    Bauer K; Pasel K; Uhrig C; Sperling P; Versmold H
    Pediatr Res; 1997 Jan; 41(1):139-44. PubMed ID: 8979303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Device for the Quantification of Oxygen Consumption and Caloric Expenditure in the Neonatal Range.
    Nachman E; Clemensen P; Santos K; Cole AR; Polizzotti BD; Hofmann G; Leeman KT; van den Bosch SJ; Kheir JN
    Anesth Analg; 2018 Jul; 127(1):95-104. PubMed ID: 29505450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of Oxygen Consumption and Carbon Dioxide Elimination Measurements in 2 Breath-by-Breath Devices.
    Smallwood CD; Kheir JN; Walsh BK; Mehta NM
    Respir Care; 2017 Apr; 62(4):475-480. PubMed ID: 28096476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pocket-sized metabolic analyzer for assessment of resting energy expenditure.
    Zhao D; Xian X; Terrera M; Krishnan R; Miller D; Bridgeman D; Tao K; Zhang L; Tsow F; Forzani ES; Tao N
    Clin Nutr; 2014 Apr; 33(2):341-7. PubMed ID: 23827182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods to validate the accuracy of an indirect calorimeter in the in-vitro setting.
    Oshima T; Ragusa M; Graf S; Dupertuis YM; Heidegger CP; Pichard C
    Clin Nutr ESPEN; 2017 Dec; 22():71-75. PubMed ID: 29415838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of oxygen uptake and carbon dioxide elimination using the bymixer: validation in a metabolic lung simulator.
    Rosenbaum A; Kirby C; Breen PH
    Anesthesiology; 2004 Jun; 100(6):1427-37. PubMed ID: 15166562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration method for small animal indirect calorimeters.
    MacKay SJ; Loiseau A; Poivre R; Huot A
    Am J Physiol; 1991 Nov; 261(5 Pt 1):E661-4. PubMed ID: 1951693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Test-retest variability of VO
    Schoffelen PFM; den Hoed M; van Breda E; Plasqui G
    Scand J Med Sci Sports; 2019 Feb; 29(2):213-222. PubMed ID: 30341979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VO2 and VCO2 variabilities through indirect calorimetry instrumentation.
    Cadena-Méndez M; Escalante-Ramírez B; Azpiroz-Leehan J; Infante-Vázquez O
    Springerplus; 2013; 2():688. PubMed ID: 24422180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The performance of a variable-flow indirect calorimeter.
    Nicholson MJ; Holton J; Bradley AP; Beatty PC; Campbell IT
    Physiol Meas; 1996 Feb; 17(1):43-55. PubMed ID: 8746376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro evaluation of a compact metabolic measurement instrument.
    Weissman C; Sardar A; Kemper M
    JPEN J Parenter Enteral Nutr; 1990; 14(2):216-21. PubMed ID: 2112632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of an indirect calorimeter using n-of-1 methodology.
    Frankenfield DC; Ashcraft CM; Wood C; Chinchilli VM
    Clin Nutr; 2016 Feb; 35(1):163-168. PubMed ID: 25707909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy and precision of CPET equipment: a comparison of breath-by-breath and mixing chamber systems.
    Beijst C; Schep G; Breda Ev; Wijn PF; Pul Cv
    J Med Eng Technol; 2013 Jan; 37(1):35-42. PubMed ID: 23110656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and Quark RMR with Deltatrac II in mechanically ventilated critically ill patients.
    Rehal MS; Fiskaare E; Tjäder I; Norberg Å; Rooyackers O; Wernerman J
    Crit Care; 2016 Mar; 20():54. PubMed ID: 26951095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical and clinical testing of a computerized indirect calorimeter for use in mechanically ventilated neonates.
    Mayfield SR
    Am J Clin Nutr; 1991 Jul; 54(1):30-4. PubMed ID: 1905477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A validation and comparison study of two metabolic monitors.
    Phang PT; Rich T; Ronco J
    JPEN J Parenter Enteral Nutr; 1990; 14(3):259-61. PubMed ID: 2112638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of a new mixing chamber system for breath-by-breath indirect calorimetry.
    Kim DY; Robergs RA
    Appl Physiol Nutr Metab; 2012 Feb; 37(1):157-66. PubMed ID: 22300357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indirect calorimetry in humans: a postcalorimetric evaluation procedure for correction of metabolic monitor variability.
    Schadewaldt P; Nowotny B; Strassburger K; Kotzka J; Roden M
    Am J Clin Nutr; 2013 Apr; 97(4):763-73. PubMed ID: 23446893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.