These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17946699)

  • 1. Automated non-invasive detection of pumping states in an implantable rotary blood pump.
    Karantonis DM; Cloherty SL; Mason DG; Salamonsen RF; Ayre PJ; Lovell NH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5386-9. PubMed ID: 17946699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and classification of physiologically significant pumping states in an implantable rotary blood pump.
    Karantonis DM; Lovell NH; Ayre PJ; Mason DG; Cloherty SL
    Artif Organs; 2006 Sep; 30(9):671-9. PubMed ID: 16934095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of physiologically significant pumping states in an implantable rotary blood pump: effects of cardiac rhythm disturbances.
    Karantonis DM; Lovell NH; Ayre PJ; Mason DG; Cloherty SL
    Artif Organs; 2007 Jun; 31(6):476-9. PubMed ID: 17537061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of physiologically significant pumping states in an implantable rotary blood pump: patient trial results.
    Karantonis DM; Mason DG; Salamonsen RF; Ayre PJ; Cloherty SL; Lovell NH
    ASAIO J; 2007; 53(5):617-22. PubMed ID: 17885336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of aortic valve opening during rotary blood pump support using pump signals.
    Granegger M; Schima H; Zimpfer D; Moscato F
    Artif Organs; 2014 Apr; 38(4):290-7. PubMed ID: 24102321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A discriminant-analysis-based suction detection system for rotary blood pumps.
    Ferreira A; Chen S; Simaan MA; Boston JR; Antaki JF
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5382-5. PubMed ID: 17946698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of suction detection during different pumping states in an implantable rotary blood pump.
    Ng SC; Lim E; Mason DG; Avolio AP; Lovell NH
    Artif Organs; 2013 Aug; 37(8):E145-54. PubMed ID: 23635073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust aortic valve non-opening detection for different cardiac conditions.
    Ooi HL; Ng SC; Lim E; Salamonsen RF; Avolio AP; Lovell NH
    Artif Organs; 2014 Mar; 38(3):E57-67. PubMed ID: 24422872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A suction detection system for rotary blood pumps based on the Lagrangian support vector machine algorithm.
    Wang Y; Simaan MA
    IEEE J Biomed Health Inform; 2013 May; 17(3):654-63. PubMed ID: 23192602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling study of the failing heart and its interaction with an implantable rotary blood pump.
    Ramachandran DP; Luo C; Ma TS; Clark JW
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2403-9. PubMed ID: 22254826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Monitoring of Aortic Valve Opening in Rotary Blood Pump Patients.
    Granegger M; Masetti M; Laohasurayodhin R; Schloeglhofer T; Zimpfer D; Schima H; Moscato F
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1201-7. PubMed ID: 26461795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Control Method for Rotary Blood Pumps as Left Ventricular Assist Device Utilizing Aortic Valve State Detection.
    Petukhov D; Korn L; Walter M; Telyshev D
    Biomed Res Int; 2019; 2019():1732160. PubMed ID: 31886175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power consumption of rotary blood pumps: pulsatile versus constant-speed mode.
    Pirbodaghi T; Cotter C; Bourque K
    Artif Organs; 2014 Dec; 38(12):1024-8. PubMed ID: 24842216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Five years experience with non-pulsatile flow].
    Grinda JM; Bricourt MO; Salvi S; Jouan J; Guillemain R; Deloche A; Fabiani JN
    Arch Mal Coeur Vaiss; 2005 Oct; 98(10):1008-12. PubMed ID: 16294548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implantable physiologic controller for left ventricular assist devices with telemetry capability.
    Asgari SS; Bonde P
    J Thorac Cardiovasc Surg; 2014 Jan; 147(1):192-202. PubMed ID: 24176267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomy and Physiology of Left Ventricular Suction Induced by Rotary Blood Pumps.
    Salamonsen RF; Lim E; Moloney J; Lovell NH; Rosenfeldt FL
    Artif Organs; 2015 Aug; 39(8):681-90. PubMed ID: 26146861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suction detection for the MicroMed DeBakey Left Ventricular Assist Device.
    Voigt O; Benkowski RJ; Morello GF
    ASAIO J; 2005; 51(4):321-8. PubMed ID: 16156293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.
    Stevens MC; Wilson S; Bradley A; Fraser J; Timms D
    Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control system for an implantable rotary blood pump.
    Nakata KI; Yoshikawa M; Takano T; Sankai Y; Ohtsuka G; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosaka S; Nose Y
    Ann Thorac Cardiovasc Surg; 2000 Aug; 6(4):242-6. PubMed ID: 11042480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.