BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 17946720)

  • 1. Hardware accelerator for genomic sequence alignment.
    Chiang J; Studniberg M; Shaw J; Seto S; Truong K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5787-9. PubMed ID: 17946720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA).
    Li IT; Shum W; Truong K
    BMC Bioinformatics; 2007 Jun; 8():185. PubMed ID: 17555593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-speed multiple sequence alignment on a reconfigurable platform.
    Oliver T; Schmidt B; Maskell D; Nathan D; Clemens R
    Int J Bioinform Res Appl; 2006; 2(4):394-406. PubMed ID: 18048180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heuristic reusable dynamic programming: efficient updates of local sequence alignment.
    Hong C; Tewfik AH
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(4):570-82. PubMed ID: 19875856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment.
    Manavski SA; Valle G
    BMC Bioinformatics; 2008 Mar; 9 Suppl 2(Suppl 2):S10. PubMed ID: 18387198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW.
    Oliver T; Schmidt B; Nathan D; Clemens R; Maskell D
    Bioinformatics; 2005 Aug; 21(16):3431-2. PubMed ID: 15919726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient and high performance linear recursive variable expansion implementation of the Smith-Waterman algorithm.
    Hasan L; Al-Ars Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3845-8. PubMed ID: 19963596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pairwise sequence alignment for very long sequences on GPUs.
    Li J; Ranka S; Sahni S
    Int J Bioinform Res Appl; 2014; 10(4-5):345-68. PubMed ID: 24989857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SWIFOLD: Smith-Waterman implementation on FPGA with OpenCL for long DNA sequences.
    Rucci E; Garcia C; Botella G; De Giusti A; Naiouf M; Prieto-Matias M
    BMC Syst Biol; 2018 Nov; 12(Suppl 5):96. PubMed ID: 30458766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pairwise alignment for very long nucleic acid sequences.
    Sun J; Chen K; Hao Z
    Biochem Biophys Res Commun; 2018 Jul; 502(3):313-317. PubMed ID: 29800571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ADEPT: a domain independent sequence alignment strategy for gpu architectures.
    Awan MG; Deslippe J; Buluc A; Selvitopi O; Hofmeyr S; Oliker L; Yelick K
    BMC Bioinformatics; 2020 Sep; 21(1):406. PubMed ID: 32933482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimised fine and coarse parallelism for sequence homology search.
    Meng X; Chaudhary V
    Int J Bioinform Res Appl; 2006; 2(4):430-41. PubMed ID: 18048183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A table-driven, full-sensitivity similarity search algorithm.
    Myers G; Durbin R
    J Comput Biol; 2003; 10(2):103-17. PubMed ID: 12804086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ParAlign: a parallel sequence alignment algorithm for rapid and sensitive database searches.
    Rognes T
    Nucleic Acids Res; 2001 Apr; 29(7):1647-52. PubMed ID: 11266569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Six-fold speed-up of Smith-Waterman sequence database searches using parallel processing on common microprocessors.
    Rognes T; Seeberg E
    Bioinformatics; 2000 Aug; 16(8):699-706. PubMed ID: 11099256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FPGASW: Accelerating Large-Scale Smith-Waterman Sequence Alignment Application with Backtracking on FPGA Linear Systolic Array.
    Fei X; Dan Z; Lina L; Xin M; Chunlei Z
    Interdiscip Sci; 2018 Mar; 10(1):176-188. PubMed ID: 28432608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Striped Smith-Waterman speeds database searches six times over other SIMD implementations.
    Farrar M
    Bioinformatics; 2007 Jan; 23(2):156-61. PubMed ID: 17110365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DIAL: a web server for the pairwise alignment of two RNA three-dimensional structures using nucleotide, dihedral angle and base-pairing similarities.
    Ferrè F; Ponty Y; Lorenz WA; Clote P
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W659-68. PubMed ID: 17567620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refined repetitive sequence searches utilizing a fast hash function and cross species information retrievals.
    Reneker J; Shyu CR
    BMC Bioinformatics; 2005 May; 6():111. PubMed ID: 15869708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SS-Wrapper: a package of wrapper applications for similarity searches on Linux clusters.
    Wang C; Lefkowitz EJ
    BMC Bioinformatics; 2004 Oct; 5():171. PubMed ID: 15511296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.