These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17946816)

  • 1. Improved traction for a mobile robot traveling on the heart.
    Patronik NA; Ota T; Zenati MA; Riviere CN
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():339-42. PubMed ID: 17946816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronization of epicardial crawling robot with heartbeat and respiration for improved safety and efficiency of locomotion.
    Patronik NA; Ota T; Zenati MA; Riviere CN
    Int J Med Robot; 2012 Mar; 8(1):97-106. PubMed ID: 22009934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of bioinspired gecko fibers to improve adhesion of HeartLander surgical robot.
    Tortora G; Glass P; Wood N; Aksak B; Menciassi A; Sitti M; Riviere C
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():908-11. PubMed ID: 23366040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimally invasive epicardial injections using a novel semiautonomous robotic device.
    Ota T; Patronik NA; Schwartzman D; Riviere CN; Zenati MA
    Circulation; 2008 Sep; 118(14 Suppl):S115-20. PubMed ID: 18824742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel highly articulated robotic surgical system for epicardial ablation.
    Ota T; Degani A; Schwartzman D; Zubiate B; McGarvey J; Choset H; Zenati MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():250-3. PubMed ID: 19162640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary evaluation of a mobile robotic device for navigation and intervention on the beating heart.
    Patronik NA; Zenati MA; Riviere CN
    Comput Aided Surg; 2005 Jul; 10(4):225-32. PubMed ID: 16393791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A parallel wire robot for epicardial interventions.
    Costanza AD; Wood NA; Passineau MJ; Moraca RJ; Bailey SH; Yoshizumi T; Riviere CN
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6155-8. PubMed ID: 25571402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation in vitro of a treatment planning algorithm for an epicardial crawling robot.
    Goyette BE; Becker BC; Zenati MA; Riviere CN
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2275-8. PubMed ID: 21097014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An earthworm-like microrobot for colonoscopy.
    Wang KD; Yan GZ
    Biomed Instrum Technol; 2006; 40(6):471-8. PubMed ID: 17190090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards localizing on the surface of the beating heart.
    Wood NA; Liu TY; Waugh K; Zenati MA; Riviere CN
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1413-6. PubMed ID: 23366165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bio-inspired expandable soft suction gripper for minimal invasive surgery-an explorative design study.
    Kortman VG; Sakes A; Endo G; Breedveld P
    Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37059112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cutting tool system to minimize soft tissue damage for robot-assisted minimally invasive orthopedic surgery.
    Sugita N; Nakajima Y; Mitsuishi M; Kawata S; Fujiwara K; Abe N; Ozaki T; Suzuki M
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):994-1001. PubMed ID: 18051155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier modeling of porcine heartbeat and respiration in vivo for synchronization of HeartLander robot locomotion.
    Wood NA; Patronik NA; Zenati MA; Riviere CN
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7041-4. PubMed ID: 22255960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of anisotropic soft pads in a surgical gripper for secure and gentle grip on vulnerable tissues.
    van Assenbergh P; Culmone C; Breedveld P; Dodou D
    Proc Inst Mech Eng H; 2021 Mar; 235(3):255-263. PubMed ID: 33234016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-assisted image-guided targeting for minimally invasive neurosurgery: planning, registration, and in-vitro experiment.
    Shamir R; Freiman M; Joskowicz L; Shoham M; Zehavi E; Shoshan Y
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):131-8. PubMed ID: 16685952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved surgical instrument without coupled motions that can be used in robotic-assisted minimally invasive surgery.
    Mei F; Yili F; Bo P; Xudong Z
    Proc Inst Mech Eng H; 2012 Aug; 226(8):623-30. PubMed ID: 23057235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to do it: importance of left atrial side retraction in robotic and minimally invasive mitral valve surgery.
    Ishikawa N; Sun YS; Nifong LW; Watanabe G; Chitwood WR
    Heart Surg Forum; 2008; 11(5):E270-1. PubMed ID: 18948238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Study Ex Vivo of the Effect of Epicardial Fat on the HeartLander Robotic Crawler.
    Patronik NA; Zenati MA; Riviere CN
    IFMBE Proc; 2012; 37(Part 1, Part 3):227-230. PubMed ID: 22866058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic cardiovascular surgery.
    Kypson AP; Chitwood WR
    Expert Rev Med Devices; 2006 May; 3(3):335-43. PubMed ID: 16681455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dragline-forming mobile robot inspired by spiders.
    Wang L; Culha U; Iida F
    Bioinspir Biomim; 2014 Mar; 9(1):016006. PubMed ID: 24434546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.