These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17946859)

  • 1. Role of cell-cell interactions on the regeneration of soft tissue-to-bone interface.
    Wang IE; Lu HH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():783-6. PubMed ID: 17946859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of osteoblast-fibroblast interactions in the formation of the ligament-to-bone interface.
    Wang IE; Shan J; Choi R; Oh S; Kepler CK; Chen FH; Lu HH
    J Orthop Res; 2007 Dec; 25(12):1609-20. PubMed ID: 17676622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular interactions regulate stem cell differentiation in tri-culture.
    Wang IE; Bogdanowicz DR; Mitroo S; Shan J; Kala S; Lu HH
    Connect Tissue Res; 2016 Nov; 57(6):476-487. PubMed ID: 27599920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro.
    Jiang J; Nicoll SB; Lu HH
    Biochem Biophys Res Commun; 2005 Dec; 338(2):762-70. PubMed ID: 16259947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration.
    Spalazzi JP; Dagher E; Doty SB; Guo XE; Rodeo SA; Lu HH
    J Biomed Mater Res A; 2008 Jul; 86(1):1-12. PubMed ID: 18442111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo evaluation of a tri-phasic composite scaffold for anterior cruciate ligament-to-bone integration.
    Spalazzi JP; Dagher E; Doty SB; Guo XE; Rodeo SA; Lu HH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():525-8. PubMed ID: 17946839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering.
    Spalazzi JP; Doty SB; Moffat KL; Levine WN; Lu HH
    Tissue Eng; 2006 Dec; 12(12):3497-508. PubMed ID: 17518686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro ligament-bone interface regeneration using a trilineage coculture system on a hybrid silk scaffold.
    He P; Ng KS; Toh SL; Goh JC
    Biomacromolecules; 2012 Sep; 13(9):2692-703. PubMed ID: 22880933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stratified scaffold design for engineering composite tissues.
    Mosher CZ; Spalazzi JP; Lu HH
    Methods; 2015 Aug; 84():99-102. PubMed ID: 25846397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soluble phosphate glasses: in vitro studies using human cells of hard and soft tissue origin.
    Bitar M; Salih V; Mudera V; Knowles JC; Lewis MP
    Biomaterials; 2004 May; 25(12):2283-92. PubMed ID: 14741593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early cellular responses of BMSCs genetically modified with bFGF/BMP2 co-cultured with ligament fibroblasts in a three-dimensional model in vitro.
    Li B; Jha RK; Qi YJ; Ni QB; Wang H; Chen B; Chen LB
    Int J Mol Med; 2016 Nov; 38(5):1578-1586. PubMed ID: 28025991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone marrow stromal cells act as feeder cells for tendon fibroblasts through soluble factors.
    Shimode K; Iwasaki N; Majima T; Funakoshi T; Sawaguchi N; Onodera T; Minami A
    Tissue Eng; 2007 Feb; 13(2):333-41. PubMed ID: 17518567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional regeneration of ligament-bone interface using a triphasic silk-based graft.
    Li H; Fan J; Sun L; Liu X; Cheng P; Fan H
    Biomaterials; 2016 Nov; 106():180-92. PubMed ID: 27566867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Coculture Fibroblasts and Vascular Endothelial Cells on Proliferation and Osteogenesis of Adipose Stem Cells.
    Liao X; Zhong R; Zhang H; Wang F
    Comput Math Methods Med; 2022; 2022():6288695. PubMed ID: 35069787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of chondrocyte differentiation level via co-culture with osteoblasts.
    Nakaoka R; Hsiong SX; Mooney DJ
    Tissue Eng; 2006 Sep; 12(9):2425-33. PubMed ID: 16995776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Differentiation of directly co-cultured bone marrow mesenchymal stem cells and ligament fibroblasts into ligament cells after induced by transforming growth factor β1 and basic fibroblast growth factor].
    Liu Y; Zhang C; Fan Q; Sun P; Wu S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Nov; 28(11):1406-12. PubMed ID: 25639060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro study of stem cell communication via gap junctions for fibrocartilage regeneration at entheses.
    Nayak BP; Goh JC; Toh SL; Satpathy GR
    Regen Med; 2010 Mar; 5(2):221-9. PubMed ID: 20210582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic-organic hybrid scaffolds for osteochondral regeneration.
    Munoz-Pinto DJ; McMahon RE; Kanzelberger MA; Jimenez-Vergara AC; Grunlan MA; Hahn MS
    J Biomed Mater Res A; 2010 Jul; 94(1):112-21. PubMed ID: 20128006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibroblasts regulate osteoblasts through gap junctional communication.
    Pirraco RP; Cerqueira MT; Reis RL; Marques AP
    Cytotherapy; 2012 Nov; 14(10):1276-87. PubMed ID: 22853696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source.
    Van Eijk F; Saris DB; Riesle J; Willems WJ; Van Blitterswijk CA; Verbout AJ; Dhert WJ
    Tissue Eng; 2004; 10(5-6):893-903. PubMed ID: 15265307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.