BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17946860)

  • 1. Engineering of fiber-reinforced tissues with anisotropic biodegradable nanofibrous scaffolds.
    Nerurkar NL; Baker BM; Chen CY; Elliott DM; Mauck RL
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():787-90. PubMed ID: 17946860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering.
    Li WJ; Mauck RL; Cooper JA; Yuan X; Tuan RS
    J Biomech; 2007; 40(8):1686-1693. PubMed ID: 17056048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation behaviors of electrospun resorbable polyester nanofibers.
    Dong Y; Liao S; Ngiam M; Chan CK; Ramakrishna S
    Tissue Eng Part B Rev; 2009 Sep; 15(3):333-51. PubMed ID: 19459780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and modeling of dynamic multipolymer nanofibrous scaffolds.
    Baker BM; Nerurkar NL; Burdick JA; Elliott DM; Mauck RL
    J Biomech Eng; 2009 Oct; 131(10):101012. PubMed ID: 19831482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospinning of microbial polyester for cell culture.
    Kwon OH; Lee IS; Ko YG; Meng W; Jung KH; Kang IK; Ito Y
    Biomed Mater; 2007 Mar; 2(1):S52-8. PubMed ID: 18458420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of Scaffolds Using Melt Electrospinning Writing and Cell Seeding.
    Bolle ECL; Nicdao D; Dalton PD; Dargaville TR
    Methods Mol Biol; 2021; 2147():111-124. PubMed ID: 32840814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration.
    Park SH; Kim TG; Kim HC; Yang DY; Park TG
    Acta Biomater; 2008 Sep; 4(5):1198-207. PubMed ID: 18458008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold.
    Kim GH
    Biomed Mater; 2008 Jun; 3(2):025010. PubMed ID: 18458365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanofibrous poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) scaffolds provide a functional microenvironment for cartilage repair.
    Ching KY; Andriotis OG; Li S; Basnett P; Su B; Roy I; Tare RS; Sengers BG; Stolz M
    J Biomater Appl; 2016 Jul; 31(1):77-91. PubMed ID: 27013217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and characterization of a biodegradable composite scaffold for ligament tissue engineering.
    Hayami JW; Surrao DC; Waldman SD; Amsden BG
    J Biomed Mater Res A; 2010 Mar; 92(4):1407-20. PubMed ID: 19353565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential for the use of nanofeaturing in medical devices.
    Curtis A
    Expert Rev Med Devices; 2005 May; 2(3):293-301. PubMed ID: 16288593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable fiber orientation and nonlinear elasticity of electrospun nanofibrous small diameter tubular scaffolds for vascular tissue engineering.
    Niu Z; Wang X; Meng X; Guo X; Jiang Y; Xu Y; Li Q; Shen C
    Biomed Mater; 2019 Mar; 14(3):035006. PubMed ID: 30776786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun fine-textured scaffolds for heart tissue constructs.
    Zong X; Bien H; Chung CY; Yin L; Fang D; Hsiao BS; Chu B; Entcheva E
    Biomaterials; 2005 Sep; 26(26):5330-8. PubMed ID: 15814131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospinning of aligned biodegradable polymer fibers and composite fibers for tissue engineering applications.
    Tong HW; Wang M
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3834-40. PubMed ID: 18047070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering.
    Prabhakaran MP; Venugopal JR; Ramakrishna S
    Biomaterials; 2009 Oct; 30(28):4996-5003. PubMed ID: 19539369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering.
    Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S
    Tissue Eng Part A; 2009 Nov; 15(11):3605-19. PubMed ID: 19496678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanofibrous scaffolds electrospun from elastomeric biodegradable poly(L-lactide-co-epsilon-caprolactone) copolymer.
    Chung S; Moghe AK; Montero GA; Kim SH; King MW
    Biomed Mater; 2009 Feb; 4(1):015019. PubMed ID: 19193973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility and Structural Features of Biodegradable Polymer Scaffolds.
    Nasonova MV; Glushkova TV; Borisov VV; Velikanova EA; Burago AY; Kudryavtseva YA
    Bull Exp Biol Med; 2015 Nov; 160(1):134-40. PubMed ID: 26608377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive composite materials for tissue engineering scaffolds.
    Boccaccini AR; Blaker JJ
    Expert Rev Med Devices; 2005 May; 2(3):303-17. PubMed ID: 16288594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.