These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17946870)

  • 1. Charge injection capacity of TiN electrodes for an extended voltage range.
    Patan M; Shah T; Sahin M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():890-2. PubMed ID: 17946870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
    Samba R; Herrmann T; Zeck G
    J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes.
    Weiland JD; Anderson DJ; Humayun MS
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1574-9. PubMed ID: 12549739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel technique for increasing charge injection capacity of neural electrodes for efficacious and safe neural stimulation.
    Negi S; Bhandari R; Solzbacher F
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5142-5. PubMed ID: 23367086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo and in vitro differences in the charge-injection and electrochemical properties of iridium oxide electrodes.
    Cogan SF
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():882-5. PubMed ID: 17946868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording.
    Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM
    J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes.
    Cogan SF; Troyk PR; Ehrlich J; Plante TD
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1612-4. PubMed ID: 16189975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Fractal Electrode Geometry in Charge Injection Capacity of TiN Microelectrodes.
    Park H; Maple AR; Lee H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3371-3374. PubMed ID: 33018727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes.
    Cogan SF; Troyk PR; Ehrlich J; Plante TD; Detlefsen DE
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):327-32. PubMed ID: 16485762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro study of titanium nitride electrodes for neural stimulation.
    Aryan NP; Asad MI; Brendler C; Kibbel S; Heusel G; Rothermel A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2866-9. PubMed ID: 22254939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo charge capacity of AIROF microelectrodes.
    Hu Z; Troyk PR; Brawn TP; Margoliash D; Cogan SF
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():886-9. PubMed ID: 17946869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A voltage-controlled current source with regulated electrode bias-voltage for safe neural stimulation.
    Schuettler M; Franke M; Krueger TB; Stieglitz T
    J Neurosci Methods; 2008 Jun; 171(2):248-52. PubMed ID: 18471890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical performance of penetrating microelectrodes chronically implanted in cat cortex.
    Kane SR; Cogan SF; Ehrlich J; Plante TD; McCreery DB
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5416-9. PubMed ID: 22255562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of electrolyte composition on the in vitro charge-injection limits of activated iridium oxide (AIROF) stimulation electrodes.
    Cogan SF; Troyk PR; Ehrlich J; Gasbarro CM; Plante TD
    J Neural Eng; 2007 Jun; 4(2):79-86. PubMed ID: 17409482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording.
    Venkatraman S; Hendricks J; King ZA; Sereno AJ; Richardson-Burns S; Martin D; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):307-16. PubMed ID: 21292598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural stimulation and recording electrodes.
    Cogan SF
    Annu Rev Biomed Eng; 2008; 10():275-309. PubMed ID: 18429704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical characteristics of ultramicro-dimensioned SIROF electrodes for neural stimulation and recording.
    Ghazavi A; Maeng J; Black M; Salvi S; Cogan SF
    J Neural Eng; 2020 Jan; 17(1):016022. PubMed ID: 31665712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfabricated cylindrical multielectrodes for neural stimulation.
    Snow S; Jacobsen SC; Wells DL; Horch KW
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):320-6. PubMed ID: 16485761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge injection characteristics of sputtered ruthenium oxide electrodes for neural stimulation and recording.
    Chakraborty B; Joshi-Imre A; Cogan SF
    J Biomed Mater Res B Appl Biomater; 2022 Jan; 110(1):229-238. PubMed ID: 34259381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Penetrating microelectrode arrays with low-impedance sputtered iridium oxide electrode coatings.
    Cogan SF; Ehrlich J; Plante TD; Van Wagenen R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7147-50. PubMed ID: 19965266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.