These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 17946892)
1. Labeling and imaging of human mesenchymal stem cells with quantum dot bioconjugates during proliferation and osteogenic differentiation in long term. Shah B; Clark P; Stroscio M; Mao J Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1470-3. PubMed ID: 17946892 [TBL] [Abstract][Full Text] [Related]
2. Labeling of mesenchymal stem cells with bioconjugated quantum dots. Shah BS; Mao JJ Methods Mol Biol; 2011; 680():61-75. PubMed ID: 21153373 [TBL] [Abstract][Full Text] [Related]
3. The inhibition of osteogenesis with human bone marrow mesenchymal stem cells by CdSe/ZnS quantum dot labels. Hsieh SC; Wang FF; Lin CS; Chen YJ; Hung SC; Wang YJ Biomaterials; 2006 Mar; 27(8):1656-64. PubMed ID: 16188313 [TBL] [Abstract][Full Text] [Related]
4. Labeling of mesenchymal stem cells by bioconjugated quantum dots. Shah BS; Clark PA; Moioli EK; Stroscio MA; Mao JJ Nano Lett; 2007 Oct; 7(10):3071-9. PubMed ID: 17887799 [TBL] [Abstract][Full Text] [Related]
5. Multifunctional Quantum Dot Nanoparticles for Effective Differentiation and Long-Term Tracking of Human Mesenchymal Stem Cells In Vitro and In Vivo. Li J; Lee WY; Wu T; Xu J; Zhang K; Li G; Xia J; Bian L Adv Healthc Mater; 2016 May; 5(9):1049-57. PubMed ID: 26919348 [TBL] [Abstract][Full Text] [Related]
6. Biocompatibility of quantum dots (CdSe/ZnS ) in human amniotic membrane-derived mesenchymal stem cells in vitro. Wang G; Zeng G; Wang C; Wang H; Yang B; Guan F; Li D; Feng X Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2015 Jun; 159(2):227-33. PubMed ID: 25277490 [TBL] [Abstract][Full Text] [Related]
7. Quantum dot labeling using positive charged peptides in human hematopoetic and mesenchymal stem cells. Ranjbarvaziri S; Kiani S; Akhlaghi A; Vosough A; Baharvand H; Aghdami N Biomaterials; 2011 Aug; 32(22):5195-205. PubMed ID: 21549422 [TBL] [Abstract][Full Text] [Related]
8. Polymer-ceramic composite scaffold induces osteogenic differentiation of human mesenchymal stem cells. Leong NL; Jiang J; Lu HH Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2651-4. PubMed ID: 17946970 [TBL] [Abstract][Full Text] [Related]
9. Osteogenic differentiation of human dental papilla mesenchymal cells. Ikeda E; Hirose M; Kotobuki N; Shimaoka H; Tadokoro M; Maeda M; Hayashi Y; Kirita T; Ohgushi H Biochem Biophys Res Commun; 2006 Apr; 342(4):1257-62. PubMed ID: 16516858 [TBL] [Abstract][Full Text] [Related]
10. Uptake and distribution of carboxylated quantum dots in human mesenchymal stem cells: cell growing density matters. Kundrotas G; Karabanovas V; Pleckaitis M; Juraleviciute M; Steponkiene S; Gudleviciene Z; Rotomskis R J Nanobiotechnology; 2019 Mar; 17(1):39. PubMed ID: 30866960 [TBL] [Abstract][Full Text] [Related]
11. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Barradas AM; Fernandes HA; Groen N; Chai YC; Schrooten J; van de Peppel J; van Leeuwen JP; van Blitterswijk CA; de Boer J Biomaterials; 2012 Apr; 33(11):3205-15. PubMed ID: 22285104 [TBL] [Abstract][Full Text] [Related]
12. In vitro and in vivo osteogenic potential of bioactive glass-PVA hybrid scaffolds colonized by mesenchymal stem cells. Gomide VS; Zonari A; Ocarino NM; Goes AM; Serakides R; Pereira MM Biomed Mater; 2012 Feb; 7(1):015004. PubMed ID: 22260840 [TBL] [Abstract][Full Text] [Related]
13. Titania-hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation. Dimitrievska S; Bureau MN; Antoniou J; Mwale F; Petit A; Lima RS; Marple BR J Biomed Mater Res A; 2011 Sep; 98(4):576-88. PubMed ID: 21702080 [TBL] [Abstract][Full Text] [Related]
15. Effects of high glucose on mesenchymal stem cell proliferation and differentiation. Li YM; Schilling T; Benisch P; Zeck S; Meissner-Weigl J; Schneider D; Limbert C; Seufert J; Kassem M; Schütze N; Jakob F; Ebert R Biochem Biophys Res Commun; 2007 Nov; 363(1):209-15. PubMed ID: 17868648 [TBL] [Abstract][Full Text] [Related]
16. In vitro growth of human umbilical blood mesenchymal stem cells and their differentiation into chondrocytes and osteoblasts. Kosmacheva SM; Volk MV; Yeustratenka TA; Severin IN; Potapnev MP Bull Exp Biol Med; 2008 Jan; 145(1):141-5. PubMed ID: 19024023 [TBL] [Abstract][Full Text] [Related]
17. Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells. Wang LS; Du C; Chung JE; Kurisawa M Acta Biomater; 2012 May; 8(5):1826-37. PubMed ID: 22343003 [TBL] [Abstract][Full Text] [Related]
18. Role of substrate microstructure on osteogenic differentiation of mesenchymal stem cells. Jabbari E Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3543-5. PubMed ID: 21096823 [TBL] [Abstract][Full Text] [Related]
19. Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity. Vidal MA; Kilroy GE; Johnson JR; Lopez MJ; Moore RM; Gimble JM Vet Surg; 2006 Oct; 35(7):601-10. PubMed ID: 17026544 [TBL] [Abstract][Full Text] [Related]
20. Controlling cellular biomechanics of human mesenchymal stem cells. Titushkin IA; Cho MR Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2090-3. PubMed ID: 19964578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]