These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 17946897)

  • 1. A novel surgical robot design: minimizing the operating envelope within the sterile field.
    Dachs GW; Peine WJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1505-8. PubMed ID: 17946897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved surgical instrument without coupled motions that can be used in robotic-assisted minimally invasive surgery.
    Mei F; Yili F; Bo P; Xudong Z
    Proc Inst Mech Eng H; 2012 Aug; 226(8):623-30. PubMed ID: 23057235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of multi-degrees-of-freedom dexterous modular arm instruments for minimally invasive surgery.
    Cepolina FE; Zoppi M
    Proc Inst Mech Eng H; 2012 Nov; 226(11):827-37. PubMed ID: 23185953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic hand-held surgical device: evaluation of end-effector's kinematics and development of proof-of-concept prototypes.
    Zahraee AH; Szewczyk J; Paik JK; Morel G
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):432-9. PubMed ID: 20879429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using simulation to design control strategies for robotic no-scar surgery.
    De Donno A; Nageotte F; Zanne P; Goffin L; de Mathelin M
    Stud Health Technol Inform; 2013; 184():117-21. PubMed ID: 23400142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Miniature robotic guidance for spine surgery--introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres.
    Barzilay Y; Liebergall M; Fridlander A; Knoller N
    Int J Med Robot; 2006 Jun; 2(2):146-53. PubMed ID: 17520625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Chopstick" surgery: a novel technique improves surgeon performance and eliminates arm collision in robotic single-incision laparoscopic surgery.
    Joseph RA; Goh AC; Cuevas SP; Donovan MA; Kauffman MG; Salas NA; Miles B; Bass BL; Dunkin BJ
    Surg Endosc; 2010 Jun; 24(6):1331-5. PubMed ID: 20033723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of a spherical mechanism for a minimally invasive surgical robot: theoretical and experimental approaches.
    Lum MJ; Rosen J; Sinanan MN; Hannaford B
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1440-5. PubMed ID: 16830951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A gearing mechanism with 4 degrees of freedom for robotic applications in medicine].
    Pott P; Weiser P; Scharf HP; Schwarz M
    Biomed Tech (Berl); 2004 Jun; 49(6):177-80. PubMed ID: 15279468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compact forceps manipulator using friction wheel mechanism and gimbals mechanism for laparoscopic surgery.
    Suzuki T; Katayama Y; Kobayashi E; Sakuma I
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):81-8. PubMed ID: 16685946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collision detection and untangling for surgical robotic manipulators.
    Morvan T; Martinsen M; Reimers M; Samset E; Elle OJ
    Int J Med Robot; 2009 Sep; 5(3):233-42. PubMed ID: 19367614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cutting tool system to minimize soft tissue damage for robot-assisted minimally invasive orthopedic surgery.
    Sugita N; Nakajima Y; Mitsuishi M; Kawata S; Fujiwara K; Abe N; Ozaki T; Suzuki M
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):994-1001. PubMed ID: 18051155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of force feedback from each DOF on the motion accuracy of a surgical tool in performing a robot-assisted tracing task.
    Samad MD; Hu Y; Sutherland GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2093-6. PubMed ID: 21095684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and preliminary in vivo validation of a robotic laparoscope holder for minimally invasive surgery.
    Herman B; Dehez B; Duy KT; Raucent B; Dombre E; Krut S
    Int J Med Robot; 2009 Sep; 5(3):319-26. PubMed ID: 19455594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conceptual design of a miniaturized hybrid local actuator for Minimally Invasive Robotic Surgery (MIRS) instruments.
    Saedi S; Mirbagheri A; Farahmand F
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2140-3. PubMed ID: 22254761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel robotic platform for laser-assisted transurethral surgery of the prostate.
    Russo S; Dario P; Menciassi A
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):489-500. PubMed ID: 25248176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-site colectomy with miniature in vivo robotic platform.
    Wortman TD; Mondry JM; Farritor SM; Oleynikov D
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):926-9. PubMed ID: 23362242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laparoendoscopic single-site surgery using a multi-functional miniature in vivo robot.
    Wortman TD; Strabala KW; Lehman AC; Farritor SM; Oleynikov D
    Int J Med Robot; 2011 Mar; 7(1):17-21. PubMed ID: 21341358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robot-assisted laparoscopic colposacropexy and cervicosacropexy with the da Vinci® surgical system.
    Matthews CA
    Surg Technol Int; 2010 Oct; 20():232-7. PubMed ID: 21082572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Surgical robotics in neurosurgery].
    Haidegger T; Benyó Z
    Orv Hetil; 2009 Sep; 150(36):1701-11. PubMed ID: 19709985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.