BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17946919)

  • 21. A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease.
    Wan J; Steele B; Spicer SA; Strohband S; Feijóo GR; Hughes TJ; Taylor CA
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):195-206. PubMed ID: 12186712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A FSI computational framework for vascular physiopathology: A novel flow-tissue multiscale strategy.
    Bianchi D; Monaldo E; Gizzi A; Marino M; Filippi S; Vairo G
    Med Eng Phys; 2017 Sep; 47():25-37. PubMed ID: 28690045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of an abdominal aortic aneurysm on wave reflection in the aorta.
    Swillens A; Lanoye L; De Backer J; Stergiopulos N; Verdonck PR; Vermassen F; Segers P
    IEEE Trans Biomed Eng; 2008 May; 55(5):1602-11. PubMed ID: 18440906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolving mechanical properties of a model of abdominal aortic aneurysm.
    Watton PN; Hill NA
    Biomech Model Mechanobiol; 2009 Feb; 8(1):25-42. PubMed ID: 18058143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3-D numerical simulation of blood flow through models of the human aorta.
    Morris L; Delassus P; Callanan A; Walsh M; Wallis F; Grace P; McGloughlin T
    J Biomech Eng; 2005 Oct; 127(5):767-75. PubMed ID: 16248306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simplified method measuring critical arterial stenosis. An experimental study.
    Koikkalainen K; Luosto R
    Ann Med Exp Biol Fenn; 1969; 47(1):1-5. PubMed ID: 5363520
    [No Abstract]   [Full Text] [Related]  

  • 27. Wave propagation in a model of the arterial circulation.
    Wang JJ; Parker KH
    J Biomech; 2004 Apr; 37(4):457-70. PubMed ID: 14996557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions.
    Moore JE; Ku DN
    J Biomech Eng; 1994 Aug; 116(3):337-46. PubMed ID: 7799637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multiphysics simulation of a healthy and a diseased abdominal aorta.
    McGregor RH; Szczerba D; Székely G
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):227-34. PubMed ID: 18044573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational analysis of type II endoleaks in a stented abdominal aortic aneurysm model.
    Li Z; Kleinstreuer C
    J Biomech; 2006; 39(14):2573-82. PubMed ID: 16221475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.
    Kelly S; O'Rourke M
    Proc Inst Mech Eng H; 2012 Apr; 226(4):288-304. PubMed ID: 22611869
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 4D model of hemodynamics in the abdominal aorta.
    Zbicinski I; Veshkina N; Stefańczyk L
    Biomed Mater Eng; 2015; 26 Suppl 1():S257-64. PubMed ID: 26406010
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches.
    Shipkowitz T; Rodgers VG; Frazin LJ; Chandran KB
    J Biomech; 2000 Jun; 33(6):717-28. PubMed ID: 10807993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational modeling of left heart diastolic function: examination of ventricular dysfunction.
    Lemmon JD; Yoganathan AP
    J Biomech Eng; 2000 Aug; 122(4):297-303. PubMed ID: 11036551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An anatomically detailed arterial network model for one-dimensional computational hemodynamics.
    Blanco PJ; Watanabe SM; Passos MA; Lemos PA; Feijóo RA
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):736-53. PubMed ID: 25347874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness.
    Scotti CM; Shkolnik AD; Muluk SC; Finol EA
    Biomed Eng Online; 2005 Nov; 4():64. PubMed ID: 16271141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow dynamics in expansions characterizing abdominal aorta aneurysms.
    Ekaterinaris JA; Ioannou CV; Katsamouris AN
    Ann Vasc Surg; 2006 May; 20(3):351-9. PubMed ID: 16779517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluid/structure interaction applied to the simulation of Abdominal Aortic Aneurysms.
    Pélerin JL; Kulik C; Goksu C; Coatrieux JL; Rochette M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1754-7. PubMed ID: 17945665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of exercise on hemodynamic conditions in the abdominal aorta.
    Taylor CA; Hughes TJ; Zarins CK
    J Vasc Surg; 1999 Jun; 29(6):1077-89. PubMed ID: 10359942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects on Aortoiliac Fluid Dynamics After Endovascular Sealing of Abdominal Aneurysms.
    Casciaro ME; Dottori J; El-Batti S; Alsac JM; Mousseaux E; Larrabide I; Craiem D
    Vasc Endovascular Surg; 2018 Nov; 52(8):621-628. PubMed ID: 30058480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.