These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 17946928)

  • 41. Computational learning on specificity-determining residue-nucleotide interactions.
    Wong KC; Li Y; Peng C; Moses AM; Zhang Z
    Nucleic Acids Res; 2015 Dec; 43(21):10180-9. PubMed ID: 26527718
    [TBL] [Abstract][Full Text] [Related]  

  • 42. First passage time of N excluded-volume particles on a line.
    Sokolov IM; Metzler R; Pant K; Williams MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041102. PubMed ID: 16383357
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An improved alignment-free model for DNA sequence similarity metric.
    Bao J; Yuan R; Bao Z
    BMC Bioinformatics; 2014 Sep; 15(1):321. PubMed ID: 25261973
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Natural similarity measures between position frequency matrices with an application to clustering.
    Pape UJ; Rahmann S; Vingron M
    Bioinformatics; 2008 Feb; 24(3):350-7. PubMed ID: 18174183
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DNA recognition code of transcription factors in the helix-turn-helix, probe helix, hormone receptor, and zinc finger families.
    Suzuki M; Yagi N
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12357-61. PubMed ID: 7809040
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Eukaryotic transcription factor binding sites--modeling and integrative search methods.
    Hannenhalli S
    Bioinformatics; 2008 Jun; 24(11):1325-31. PubMed ID: 18426806
    [TBL] [Abstract][Full Text] [Related]  

  • 47. GRASP-DNA: a web application to screen prokaryotic genomes for specific DNA-binding sites and repeat motifs.
    Schilling CH; Held L; Torre M; Saier MH
    J Mol Microbiol Biotechnol; 2000 Oct; 2(4):495-500. PubMed ID: 11075923
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA familial binding profiles made easy: comparison of various motif alignment and clustering strategies.
    Mahony S; Auron PE; Benos PV
    PLoS Comput Biol; 2007 Mar; 3(3):e61. PubMed ID: 17397256
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A parallel scheme for comparing transcription factor binding sites matrices.
    Carat S; Houlgatte R; Bourdon J
    J Bioinform Comput Biol; 2010 Jun; 8(3):485-502. PubMed ID: 20556858
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MUSA: a parameter free algorithm for the identification of biologically significant motifs.
    Mendes ND; Casimiro AC; Santos PM; Sá-Correia I; Oliveira AL; Freitas AT
    Bioinformatics; 2006 Dec; 22(24):2996-3002. PubMed ID: 17068086
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determining functional specificity from protein sequences.
    Donald JE; Shakhnovich EI
    Bioinformatics; 2005 Jun; 21(11):2629-35. PubMed ID: 15797914
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A mathematical formulation of DNA computation.
    Zhang M; Cheng MX; Tarn TJ
    IEEE Trans Nanobioscience; 2006 Mar; 5(1):32-40. PubMed ID: 16570871
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transcription binding site prediction using Markov models.
    Abnizova I; Rust AG; Robinson M; Te Boekhorst R; Gilks WR
    J Bioinform Comput Biol; 2006 Apr; 4(2):425-41. PubMed ID: 16819793
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protein-DNA binding specificity predictions with structural models.
    Morozov AV; Havranek JJ; Baker D; Siggia ED
    Nucleic Acids Res; 2005; 33(18):5781-98. PubMed ID: 16246914
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length.
    Favorov AV; Gelfand MS; Gerasimova AV; Ravcheev DA; Mironov AA; Makeev VJ
    Bioinformatics; 2005 May; 21(10):2240-5. PubMed ID: 15728117
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inferring protein-DNA dependencies using motif alignments and mutual information.
    Mahony S; Auron PE; Benos PV
    Bioinformatics; 2007 Jul; 23(13):i297-304. PubMed ID: 17646310
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metrics for comparing regulatory sequences on the basis of pattern counts.
    van Helden J
    Bioinformatics; 2004 Feb; 20(3):399-406. PubMed ID: 14764560
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling DNA affinity landscape through two-round support vector regression with weighted degree kernels.
    Wang X; Kuwahara H; Gao X
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S5. PubMed ID: 25605483
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Searching for statistically significant regulatory modules.
    Bailey TL; Noble WS
    Bioinformatics; 2003 Oct; 19 Suppl 2():ii16-25. PubMed ID: 14534166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.