BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 17946959)

  • 1. Nonlinear dynamic neural network for text-independent speaker identification using information theoretic learning technology.
    Lu B; Yamada WM; Berger TW
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2442-5. PubMed ID: 17946959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypothesis testing for evaluating a multimodal pattern recognition framework applied to speaker detection.
    Besson P; Kunt M
    J Neuroeng Rehabil; 2008 Mar; 5():11. PubMed ID: 18371191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vocal folds disorder detection using pattern recognition methods.
    Wang J; Jo C
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3253-6. PubMed ID: 18002689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speech sound classification and detection of articulation disorders with support vector machines and wavelets.
    Georgoulas G; Georgopoulos VC; Stylios CD
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2199-202. PubMed ID: 17946095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear analysis and classification of vocal disorders.
    Aghazadeh BS; Khadivi H; Nikkhah-Bahrami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6200-3. PubMed ID: 18003437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic assessment of voice quality according to the GRBAS scale.
    Sáenz-Lechón N; Godino-Llorente JI; Osma-Ruiz V; Blanco-Velasco M; Cruz-Roldán F
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2478-81. PubMed ID: 17946516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reference-free automatic quality assessment of tracheoesophageal speech.
    Huang A; Falk TH; Chan WY; Parsa V; Doyle P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6210-3. PubMed ID: 19964897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GFM-based methods for speaker identification.
    Bhardwaj S; Srivastava S; Hanmandlu M; Gupta JR
    IEEE Trans Cybern; 2013 Jun; 43(3):1047-58. PubMed ID: 23193244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathological voice assessment.
    Dibazar AA; Berger TW; Narayanan SS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1669-73. PubMed ID: 17946059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of an HMM/ANN hybrid structure in pattern recognition application using cepstral analysis of dysarthric (distorted) speech signals.
    Polur PD; Miller GE
    Med Eng Phys; 2006 Oct; 28(8):741-8. PubMed ID: 16359906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fuzzy logic based classification and assessment of pathological voice signals.
    Aghazadeh BS; Heris HK
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():328-31. PubMed ID: 19964477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach to discriminative HMM training for pathological voice classification.
    Sarria-Paja M; Castellanos-Dominguez G; Delgado-Trejos E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4674-7. PubMed ID: 21096005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature extraction for snore sound via neural network processing.
    Emoto T; Abeyratne UR; Akutagawa M; Nagashino H; Kinouchi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5477-80. PubMed ID: 18003251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SVM-based identification of pathological voices.
    Chen W; Peng C; Zhu X; Wan B; Wei D
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3786-9. PubMed ID: 18002822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Speaker identification based on Mel frequency cepstrum coefficient and complexity measure].
    Mao D; Cao H; Murat H; Tong Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):882-6. PubMed ID: 17002130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voice activity detection algorithm using perceptual wavelet entropy neighbor slope.
    Lee G; Na SD; Cho JH; Kim MN
    Biomed Mater Eng; 2014; 24(6):3295-301. PubMed ID: 25227039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Telephony-based voice pathology assessment using automated speech analysis.
    Moran RJ; Reilly RB; de Chazal P; Lacy PD
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):468-77. PubMed ID: 16532773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection.
    Little MA; McSharry PE; Roberts SJ; Costello DA; Moroz IM
    Biomed Eng Online; 2007 Jun; 6():23. PubMed ID: 17594480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Texture Analysis of Recurrence Plots Based on Wavelets and PSO for Laryngeal Pathologies Detection.
    Souza TA; Vieira VJ; Correia SE; Costa SL; de A Costa WC; Souza MA
    Stud Health Technol Inform; 2015; 216():1047. PubMed ID: 26262346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a real time sparse non-negative matrix factorization module for cochlear implants by using xPC target.
    Hu H; Krasoulis A; Lutman M; Bleeck S
    Sensors (Basel); 2013 Oct; 13(10):13861-78. PubMed ID: 24129021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.