These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17946962)

  • 1. A reconfigurable neural signal processor (NSP) for brain machine interfaces.
    Darmanjian S; Cieslewski G; Morrison S; Dang B; Gugel K; Principe J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2502-5. PubMed ID: 17946962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fully integrated mixed-signal neural processor for implantable multichannel cortical recording.
    Sodagar AM; Wise KD; Najafi K
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1075-88. PubMed ID: 17554826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing wearable bio-feedback systems: a general-purpose platform.
    Bianchi L; Babiloni F; Cincotti F; Arrivas M; Bollero P; Marciani MG
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):117-9. PubMed ID: 12899250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An implantable bi-directional brain-machine interface system for chronic neuroprosthesis research.
    Stanslaski S; Cong P; Carlson D; Santa W; Jensen R; Molnar G; Marks WJ; Shafquat A; Denison T
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5494-7. PubMed ID: 19965049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A wearable real-time image processor for a vision prosthesis.
    Tsai D; Morley JW; Suaning GJ; Lovell NH
    Comput Methods Programs Biomed; 2009 Sep; 95(3):258-69. PubMed ID: 19394713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A TinyOS-enabled MICA2-based wireless neural interface.
    Farshchi S; Nuyujukian PH; Pesterev A; Mody I; Judy JW
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1416-24. PubMed ID: 16830946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recording brain activity wirelessly. Inductive powering in miniature implantable neural recording devices.
    Irazoqui PP; Mody I; Judy JW
    IEEE Eng Med Biol Mag; 2005; 24(6):48-54. PubMed ID: 16382805
    [No Abstract]   [Full Text] [Related]  

  • 8. Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces.
    Kim HK; Biggs SJ; Schloerb DW; Carmena JM; Lebedev MA; Nicolelis MA; Srinivasan MA
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1164-73. PubMed ID: 16761843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems.
    Zumsteg ZS; Kemere C; O'Driscoll S; Santhanam G; Ahmed RE; Shenoy KV; Meng TH
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):272-9. PubMed ID: 16200751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optical microsystem for wireless neural recording.
    Wei P; Ziaie B
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5522-4. PubMed ID: 19964126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of advanced neuroscience platform.
    Liu W; Chae MS; Yang Z; Kim H
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5535-8. PubMed ID: 19964129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active microelectronic neurosensor arrays for implantable brain communication interfaces.
    Song YK; Borton DA; Park S; Patterson WR; Bull CW; Laiwalla F; Mislow J; Simeral JD; Donoghue JP; Nurmikko AV
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):339-45. PubMed ID: 19502132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an optical brain-machine interface.
    Utsugi K; Obata A; Sato H; Katsura T; Sagara K; Maki A; Koizumi H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5338-41. PubMed ID: 18003213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward energy efficient neural interfaces.
    Peng CC; Xiao Z; Bashirullah R
    IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2697-700. PubMed ID: 19709960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. My thoughts through a robot's eyes: an augmented reality-brain-machine interface.
    Kansaku K; Hata N; Takano K
    Neurosci Res; 2010 Feb; 66(2):219-22. PubMed ID: 19853630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. User customization of the feature generator of an asynchronous brain interface.
    Bashashati A; Fatourechi M; Ward RK; Birch GE
    Ann Biomed Eng; 2006 Jun; 34(6):1051-60. PubMed ID: 16783660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BMI cyberworkstation: enabling dynamic data-driven brain-machine interface research through cyberinfrastructure.
    Zhao M; Rattanatamrong P; DiGiovanna J; Mahmoudi B; Figueiredo RJ; Sanchez JC; Príncipe JC; Fortes JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():646-9. PubMed ID: 19162738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wireless tongue-computer interface using stereo differential magnetic field measurement.
    Huo X; Wang J; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5724-7. PubMed ID: 18003312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive survey of brain interface technology designs.
    Mason SG; Bashashati A; Fatourechi M; Navarro KF; Birch GE
    Ann Biomed Eng; 2007 Feb; 35(2):137-69. PubMed ID: 17115262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neural signal processor for an implantable multi-channel cortical recording microsystem.
    Sodagar AM; Wise KD; Najafi K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5900-3. PubMed ID: 17946726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.