These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 17946967)

  • 1. Large-scale inverse and forward modeling of adaptive resonance in the tinnitus decompensation.
    Low YF; Trenado C; Delb W; D'Amelio R; Falkai P; Strauss DJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2585-8. PubMed ID: 17946967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Objective quantification of the tinnitus decompensation by synchronization measures of auditory evoked single sweeps.
    Strauss DJ; Delb W; D'Amelio R; Low YF; Falkai P
    IEEE Trans Neural Syst Rehabil Eng; 2008 Feb; 16(1):74-81. PubMed ID: 18303808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrative multiscale modeling approach for the study of tinnitus decompensation neural correlates.
    Trenado C; Haab L; Strauss DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2473-6. PubMed ID: 19163204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of attention in the tinnitus decompensation: reinforcement of a large-scale neural decompensation measure.
    Low YF; Trenado C; Delb W; Corona-Strauss FI; Strauss DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2485-8. PubMed ID: 18002498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling neural correlates of auditory attention in evoked potentials using corticothalamic feedback dynamics.
    Trenado C; Haab L; Strauss DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4281-4. PubMed ID: 18002948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocybernetics of attention in the tinnitus decompensation: An integrative multiscale modeling approach.
    Trenado C; Haab L; Reith W; Strauss DJ
    J Neurosci Methods; 2009 Mar; 178(1):237-47. PubMed ID: 19135086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural network models of tinnitus.
    Husain FT
    Prog Brain Res; 2007; 166():125-40. PubMed ID: 17956777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticothalamic feedback dynamics for neural correlates of auditory selective attention.
    Trenado C; Haab L; Strauss DJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):46-52. PubMed ID: 19211323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a compact tinnitus therapy by electrophysiological tinnitus decompensation measures.
    Low YF; Argstatter H; Bolay HV; Strauss DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5132-5. PubMed ID: 19163872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of auditory cortex in noise- and drug-induced tinnitus.
    Eggermont JJ
    Am J Audiol; 2008 Dec; 17(2):S162-9. PubMed ID: 18978202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory cortex stimulation to suppress tinnitus: mechanisms and strategies.
    Zhang J
    Hear Res; 2013 Jan; 295():38-57. PubMed ID: 22683861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for differential modulation of primary and nonprimary auditory cortex by forward masking in tinnitus.
    Roberts LE; Bosnyak DJ; Bruce IC; Gander PE; Paul BT
    Hear Res; 2015 Sep; 327():9-27. PubMed ID: 25937134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tinnitus sensitization: Sensory and psychophysiological aspects of a new pathway of acquired centralization of chronic tinnitus.
    Zenner HP; Pfister M; Birbaumer N
    Otol Neurotol; 2006 Dec; 27(8):1054-63. PubMed ID: 17130796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directing neural plasticity to understand and treat tinnitus.
    Engineer ND; Møller AR; Kilgard MP
    Hear Res; 2013 Jan; 295():58-66. PubMed ID: 23099209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oscillation and its inhibition in a neuronal network model for tinnitus sound therapy.
    Nagashino H; Fujimoto K; Kinouchi Y; Danesh AA; Pandya AS; He J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():311-4. PubMed ID: 19162655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of cortico-subcortical circuits in normoacousic chronic tinnitus: A source localization EEG study.
    Houdayer E; Teggi R; Velikova S; Gonzalez-Rosa JJ; Bussi M; Comi G; Leocani L
    Clin Neurophysiol; 2015 Dec; 126(12):2356-65. PubMed ID: 25753907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The absence of resting-state high-gamma cross-frequency coupling in patients with tinnitus.
    Ahn MH; Hong SK; Min BK
    Hear Res; 2017 Dec; 356():63-73. PubMed ID: 29097049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of auditory plasticity after cochlear implantation: a longitudinal study.
    Pantev C; Dinnesen A; Ross B; Wollbrink A; Knief A
    Cereb Cortex; 2006 Jan; 16(1):31-6. PubMed ID: 15843632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural networks of tinnitus in humans: Elucidating severity and habituation.
    Husain FT
    Hear Res; 2016 Apr; 334():37-48. PubMed ID: 26415997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connectivity graph analysis of the auditory resting state network in tinnitus.
    Maudoux A; Lefebvre P; Cabay JE; Demertzi A; Vanhaudenhuyse A; Laureys S; Soddu A
    Brain Res; 2012 Nov; 1485():10-21. PubMed ID: 22579727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.