These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 17946969)
1. Chondrogenesis of mesenchymal stem cells by controlled delivery of transforming growth factor-beta3. Moioli EK; Mao JJ Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2647-50. PubMed ID: 17946969 [TBL] [Abstract][Full Text] [Related]
2. Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner. Huang AH; Stein A; Tuan RS; Mauck RL Tissue Eng Part A; 2009 Nov; 15(11):3461-72. PubMed ID: 19432533 [TBL] [Abstract][Full Text] [Related]
3. Chondrogenic phenotype of articular chondrocytes in monoculture and co-culture with mesenchymal stem cells in flow perfusion. Dahlin RL; Meretoja VV; Ni M; Kasper FK; Mikos AG Tissue Eng Part A; 2014 Nov; 20(21-22):2883-91. PubMed ID: 24745375 [TBL] [Abstract][Full Text] [Related]
4. Inducing chondrogenic differentiation in injectable hydrogels embedded with rabbit chondrocytes and growth factor for neocartilage formation. Yun K; Moon HT J Biosci Bioeng; 2008 Feb; 105(2):122-6. PubMed ID: 18343338 [TBL] [Abstract][Full Text] [Related]
5. Temporal exposure to chondrogenic factors modulates human mesenchymal stem cell chondrogenesis in hydrogels. Buxton AN; Bahney CS; Yoo JU; Johnstone B Tissue Eng Part A; 2011 Feb; 17(3-4):371-80. PubMed ID: 20799905 [TBL] [Abstract][Full Text] [Related]
6. Effect of growth factors on chondrogenic differentiation of rabbit mesenchymal cells embedded in injectable hydrogels. Park KH; Na K J Biosci Bioeng; 2008 Jul; 106(1):74-9. PubMed ID: 18691535 [TBL] [Abstract][Full Text] [Related]
7. Chondrogenesis-inductive nanofibrous substrate using both biological fluids and mesenchymal stem cells from an autologous source. Casanova MR; Alves da Silva M; Costa-Pinto AR; Reis RL; Martins A; Neves NM Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1169-1178. PubMed ID: 30813000 [TBL] [Abstract][Full Text] [Related]
8. Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Ronzière MC; Perrier E; Mallein-Gerin F; Freyria AM Biomed Mater Eng; 2010; 20(3):145-58. PubMed ID: 20930322 [TBL] [Abstract][Full Text] [Related]
9. Acceleration of chondrogenic differentiation of human mesenchymal stem cells by sustained growth factor release in 3D graphene oxide incorporated hydrogels. Shen H; Lin H; Sun AX; Song S; Wang B; Yang Y; Dai J; Tuan RS Acta Biomater; 2020 Mar; 105():44-55. PubMed ID: 32035282 [TBL] [Abstract][Full Text] [Related]
10. A chondromimetic microsphere for in situ spatially controlled chondrogenic differentiation of human mesenchymal stem cells. Ansboro S; Hayes JS; Barron V; Browne S; Howard L; Greiser U; Lalor P; Shannon F; Barry FP; Pandit A; Murphy JM J Control Release; 2014 Apr; 179():42-51. PubMed ID: 24491910 [TBL] [Abstract][Full Text] [Related]
11. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292 [TBL] [Abstract][Full Text] [Related]
12. The effect of a chitosan-gelatin matrix and dexamethasone on the behavior of rabbit mesenchymal stem cells. Medrado GC; Machado CB; Valerio P; Sanches MD; Goes AM Biomed Mater; 2006 Sep; 1(3):155-61. PubMed ID: 18458397 [TBL] [Abstract][Full Text] [Related]
13. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Indrawattana N; Chen G; Tadokoro M; Shann LH; Ohgushi H; Tateishi T; Tanaka J; Bunyaratvej A Biochem Biophys Res Commun; 2004 Jul; 320(3):914-9. PubMed ID: 15240135 [TBL] [Abstract][Full Text] [Related]
14. Spatiotemporal regulation of chondrogenic differentiation with controlled delivery of transforming growth factor-β1 from gelatin microspheres in mesenchymal stem cell aggregates. Solorio LD; Dhami CD; Dang PN; Vieregge EL; Alsberg E Stem Cells Transl Med; 2012 Aug; 1(8):632-9. PubMed ID: 23197869 [TBL] [Abstract][Full Text] [Related]
15. Cartilage progenitor cells combined with PHBV in cartilage tissue engineering. Xue K; Zhang X; Gao Z; Xia W; Qi L; Liu K J Transl Med; 2019 Mar; 17(1):104. PubMed ID: 30925884 [TBL] [Abstract][Full Text] [Related]
16. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. Solchaga LA; Penick K; Porter JD; Goldberg VM; Caplan AI; Welter JF J Cell Physiol; 2005 May; 203(2):398-409. PubMed ID: 15521064 [TBL] [Abstract][Full Text] [Related]
17. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881 [TBL] [Abstract][Full Text] [Related]
18. Nanohybrid biodegradable scaffolds for TGF-β3 release for the chondrogenic differentiation of human mesenchymal stem cells. Qasim M; Le NXT; Nguyen TPT; Chae DS; Park SJ; Lee NY Int J Pharm; 2020 May; 581():119248. PubMed ID: 32240810 [TBL] [Abstract][Full Text] [Related]
19. Hyaluronic acid facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal stem cells and human chondrocytes co-cultures. Amann E; Wolff P; Breel E; van Griensven M; Balmayor ER Acta Biomater; 2017 Apr; 52():130-144. PubMed ID: 28131943 [TBL] [Abstract][Full Text] [Related]
20. Scaffolds for Controlled Release of Cartilage Growth Factors. Morille M; Venier-Julienne MC; Montero-Menei CN Methods Mol Biol; 2015; 1340():171-80. PubMed ID: 26445838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]