These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 17946979)

  • 1. Quantification of dynamic property of pneumatic muscle actuator for design of therapeutic robot control.
    Balasubramanian S; Huang H; He J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2734-7. PubMed ID: 17946979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of robot hand with pneumatic actuator and construct of master-slave system.
    Nishino S; Tsujiuchi N; Koizumi T; Komatsubara H; Kudawara T; Shimizu M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3027-30. PubMed ID: 18002632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Empirical modeling of dynamic behaviors of pneumatic artificial muscle actuators.
    Wickramatunge KC; Leephakpreeda T
    ISA Trans; 2013 Nov; 52(6):825-34. PubMed ID: 23871151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a biped robot actuated by pneumatic artificial muscles.
    Liu Y; Zang X; Liu X; Wang L
    Biomed Mater Eng; 2015; 26 Suppl 1():S757-66. PubMed ID: 26406072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catastrophe and stability analysis of a cable-driven actuator.
    Sulzer JS; Peshkin MA; Patton JL
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2429-33. PubMed ID: 17946512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of a pneumatic orthosis for upper extremity stroke rehabilitation.
    Wolbrecht ET; Leavitt J; Reinkensmeyer DJ; Bobrow JE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2687-93. PubMed ID: 17946132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FlexCVA: a continuously variable actuator for active orthotics.
    Horst RW; Marcus RR
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2425-8. PubMed ID: 17946511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations.
    Lilly JH
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):333-9. PubMed ID: 14518798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of bladder wall thickness on miniature pneumatic artificial muscle performance.
    Pillsbury TE; Kothera CS; Wereley NM
    Bioinspir Biomim; 2015 Sep; 10(5):055006. PubMed ID: 26414160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time myoprocessors for a neural controlled powered exoskeleton arm.
    Cavallaro EE; Rosen J; Perry JC; Burns S
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2387-96. PubMed ID: 17073345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An advanced rehabilitation robotic system for augmenting healthcare.
    Hu J; Lim YJ; Ding Y; Paluska D; Solochek A; Laffery D; Bonato P; Marchessault R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2073-6. PubMed ID: 22254745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive model-based assistive control for pneumatic direct driven soft rehabilitation robots.
    Wilkening A; Ivlev O
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650354. PubMed ID: 24187173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation.
    Park YL; Chen BR; PĂ©rez-Arancibia NO; Young D; Stirling L; Wood RJ; Goldfield EC; Nagpal R
    Bioinspir Biomim; 2014 Mar; 9(1):016007. PubMed ID: 24434598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trajectory planning and mechanic's analysis of lower limb rehabilitation robot.
    Zhiyong T; Xiaodong X; Zhongcai P
    Biomed Mater Eng; 2015; 26 Suppl 1():S347-55. PubMed ID: 26406022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints.
    Chen Y; Li G; Zhu Y; Zhao J; Cai H
    Biomed Mater Eng; 2014; 24(6):2527-35. PubMed ID: 25226954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RUPERT closed loop control design.
    Balasubramanian S; Wei R; He J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3467-70. PubMed ID: 19163455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse pneumatic artificial muscles (rPAMs): Modeling, integration, and control.
    Skorina EH; Luo M; Oo WY; Tao W; Chen F; Youssefian S; Rahbar N; Onal CD
    PLoS One; 2018; 13(10):e0204637. PubMed ID: 30312314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety.
    Kang HB; Wang JH
    ISA Trans; 2013 Nov; 52(6):844-52. PubMed ID: 23906739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origami-Based Vacuum Pneumatic Artificial Muscles with Large Contraction Ratios.
    Lee JG; Rodrigue H
    Soft Robot; 2019 Feb; 6(1):109-117. PubMed ID: 30339102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensorized, Flat, Pneumatic Artificial Muscle Embedded with Biomimetic Microfluidic Sensors for Proprioceptive Feedback.
    Wirekoh J; Valle L; Pol N; Park YL
    Soft Robot; 2019 Dec; 6(6):768-777. PubMed ID: 31373881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.