These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17947011)

  • 1. Anatomically realistic torso model for studying the relative decay of gastric electrical and magnetic fields.
    Cheng LK; Buist ML; Pullan AJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3158-61. PubMed ID: 17947011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of body parameters on gastric bioelectric and biomagnetic fields in a realistic volume conductor.
    Kim JH; Pullan AJ; Bradshaw LA; Cheng LK
    Physiol Meas; 2012 Apr; 33(4):545-56. PubMed ID: 22415019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity.
    Cheng LK; Komuro R; Austin TM; Buist ML; Pullan AJ
    World J Gastroenterol; 2007 Mar; 13(9):1378-83. PubMed ID: 17457969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of gastrointestinal tissue structure on computed dipole vectors.
    Austin TM; Li L; Pullan AJ; Cheng LK
    Biomed Eng Online; 2007 Oct; 6():39. PubMed ID: 17953773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volume conductor effects on simulated magnetogastrograms.
    Qiao W; Komuro R; Pullan AJ; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4929-32. PubMed ID: 19963870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale modelling of human gastric electric activity: can the electrogastrogram detect functional electrical uncoupling?
    Buist ML; Cheng LK; Sanders KM; Pullan AJ
    Exp Physiol; 2006 Mar; 91(2):383-90. PubMed ID: 16407476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polygonally Meshed Dipole Model Simulation of the Electrical Field Produced by the Stomach and Intestines.
    Kawano M; Emoto T
    Comput Math Methods Med; 2020; 2020():2971358. PubMed ID: 33178331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of volume conductor and source configuration on simulated magnetogastrograms.
    Komuro R; Qiao W; Pullan AJ; Cheng LK
    Phys Med Biol; 2010 Nov; 55(22):6881-95. PubMed ID: 21048291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of multiple gastric electrical wave fronts using potential based inverse methods.
    Kim JH; Pullan AJ; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1355-8. PubMed ID: 22254568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling gastrointestinal bioelectric activity.
    Pullan A; Cheng L; Yassi R; Buist M
    Prog Biophys Mol Biol; 2004; 85(2-3):523-50. PubMed ID: 15142760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human vector magnetogastrogram and magnetoenterogram.
    Bradshaw LA; Ladipo JK; Staton DJ; Wikswo JP; Richards WO
    IEEE Trans Biomed Eng; 1999 Aug; 46(8):959-70. PubMed ID: 10431461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer model of gastric electrical stimulation.
    Mintchev M; Bowes K
    Ann Biomed Eng; 1997; 25(4):726-30. PubMed ID: 9236984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vector projection of biomagnetic fields.
    Bradshaw LA; Myers A; Richards WO; Drake W; Wikswo JP
    Med Biol Eng Comput; 2005 Jan; 43(1):85-93. PubMed ID: 15742724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison and analysis of inter-subject variability of simulated magnetic activity generated from gastric electrical activity.
    Komuro R; Cheng LK; Pullan AJ
    Ann Biomed Eng; 2008 Jun; 36(6):1049-59. PubMed ID: 18330701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of stomach geometry using magnetic source localization.
    Eichler CE; Cheng LK; Paskaranandavadivel N; Alighaleh S; Angeli-Gordon TR; Du P; Bradshaw LA; Avci R
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4234-4237. PubMed ID: 34892158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detailed measurements of gastric electrical activity and their implications on inverse solutions.
    Cheng LK; O'Grady G; Du P; Egbuji JU; Windsor JA; Pullan AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1302-5. PubMed ID: 19963493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface current density mapping for identification of gastric slow wave propagation.
    Bradshaw LA; Cheng LK; Richards WO; Pullan AJ
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2131-9. PubMed ID: 19403355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An anatomical model of the gastric system for producing bioelectric and biomagnetic fields.
    Buist ML; Cheng LK; Yassi R; Bradshaw LA; Richards WO; Pullan AJ
    Physiol Meas; 2004 Aug; 25(4):849-61. PubMed ID: 15382826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A spatio-temporal dipole simulation of gastrointestinal magnetic fields.
    Bradshaw LA; Myers A; Wikswo JP; Richards WO
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):836-47. PubMed ID: 12848351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of multiple gastric electrical wave fronts using potential-based inverse methods.
    Kim JH; Pullan AJ; Cheng LK
    Phys Med Biol; 2012 Aug; 57(16):5205-19. PubMed ID: 22842812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.