BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 17947023)

  • 1. Optimization of microelectrode design for cortical recording based on thermal noise considerations.
    Lempka SF; Johnson MD; Barnett DW; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3361-4. PubMed ID: 17947023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical analysis of intracortical microelectrode recordings.
    Lempka SF; Johnson MD; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC
    J Neural Eng; 2011 Aug; 8(4):045006. PubMed ID: 21775783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-based analysis of cortical recording with silicon microelectrodes.
    Moffitt MA; McIntyre CC
    Clin Neurophysiol; 2005 Sep; 116(9):2240-50. PubMed ID: 16055377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates.
    Malaga KA; Schroeder KE; Patel PR; Irwin ZT; Thompson DE; Nicole Bentley J; Lempka SF; Chestek CA; Patil PG
    J Neural Eng; 2016 Feb; 13(1):016010. PubMed ID: 26655972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio.
    Baranauskas G; Maggiolini E; Castagnola E; Ansaldo A; Mazzoni A; Angotzi GN; Vato A; Ricci D; Panzeri S; Fadiga L
    J Neural Eng; 2011 Dec; 8(6):066013. PubMed ID: 22064890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates.
    Barrese JC; Rao N; Paroo K; Triebwasser C; Vargas-Irwin C; Franquemont L; Donoghue JP
    J Neural Eng; 2013 Dec; 10(6):066014. PubMed ID: 24216311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film.
    Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR
    J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.
    Prasad A; Sanchez JC
    J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays.
    Kozai TD; Du Z; Gugel ZV; Smith MA; Chase SM; Bodily LM; Caparosa EM; Friedlander RM; Cui XT
    J Neurosci Methods; 2015 Mar; 242():15-40. PubMed ID: 25542351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary study of the thermal impact of a microelectrode array implanted in the brain.
    Kim S; Normann RA; Harrison R; Solzbacher F
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2986-9. PubMed ID: 17946999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and fabrication of a flexible substrate microelectrode array for brain machine interfaces.
    Patrick E; Ordonez M; Alba N; Sanchez JC; Nishida T
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2966-9. PubMed ID: 17946151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Penetrating microelectrode arrays with low-impedance sputtered iridium oxide electrode coatings.
    Cogan SF; Ehrlich J; Plante TD; Van Wagenen R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7147-50. PubMed ID: 19965266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of adsorbed proteins, an antifouling agent and long-duration DC voltage pulses on the impedance of silicon-based neural microelectrodes.
    Sommakia S; Rickus JL; Otto KJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7139-42. PubMed ID: 19963693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The noise and impedance of microelectrodes.
    Mierzejewski M; Steins H; Kshirsagar P; Jones PD
    J Neural Eng; 2020 Oct; 17(5):052001. PubMed ID: 33055360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.