These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
468 related articles for article (PubMed ID: 17947023)
1. Optimization of microelectrode design for cortical recording based on thermal noise considerations. Lempka SF; Johnson MD; Barnett DW; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3361-4. PubMed ID: 17947023 [TBL] [Abstract][Full Text] [Related]
2. Theoretical analysis of intracortical microelectrode recordings. Lempka SF; Johnson MD; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC J Neural Eng; 2011 Aug; 8(4):045006. PubMed ID: 21775783 [TBL] [Abstract][Full Text] [Related]
3. Model-based analysis of cortical recording with silicon microelectrodes. Moffitt MA; McIntyre CC Clin Neurophysiol; 2005 Sep; 116(9):2240-50. PubMed ID: 16055377 [TBL] [Abstract][Full Text] [Related]
4. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. Otto KJ; Johnson MD; Kipke DR IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763 [TBL] [Abstract][Full Text] [Related]
9. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. Kipke DR; Vetter RJ; Williams JC; Hetke JF IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260 [TBL] [Abstract][Full Text] [Related]
10. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943 [TBL] [Abstract][Full Text] [Related]
11. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing. Prasad A; Sanchez JC J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134 [TBL] [Abstract][Full Text] [Related]
12. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation. Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740 [TBL] [Abstract][Full Text] [Related]
13. Toward a comparison of microelectrodes for acute and chronic recordings. Ward MP; Rajdev P; Ellison C; Irazoqui PP Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays. Kozai TD; Du Z; Gugel ZV; Smith MA; Chase SM; Bodily LM; Caparosa EM; Friedlander RM; Cui XT J Neurosci Methods; 2015 Mar; 242():15-40. PubMed ID: 25542351 [TBL] [Abstract][Full Text] [Related]
15. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835 [TBL] [Abstract][Full Text] [Related]
16. Preliminary study of the thermal impact of a microelectrode array implanted in the brain. Kim S; Normann RA; Harrison R; Solzbacher F Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2986-9. PubMed ID: 17946999 [TBL] [Abstract][Full Text] [Related]
17. Design and fabrication of a flexible substrate microelectrode array for brain machine interfaces. Patrick E; Ordonez M; Alba N; Sanchez JC; Nishida T Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2966-9. PubMed ID: 17946151 [TBL] [Abstract][Full Text] [Related]
18. Penetrating microelectrode arrays with low-impedance sputtered iridium oxide electrode coatings. Cogan SF; Ehrlich J; Plante TD; Van Wagenen R Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7147-50. PubMed ID: 19965266 [TBL] [Abstract][Full Text] [Related]
19. Effects of adsorbed proteins, an antifouling agent and long-duration DC voltage pulses on the impedance of silicon-based neural microelectrodes. Sommakia S; Rickus JL; Otto KJ Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7139-42. PubMed ID: 19963693 [TBL] [Abstract][Full Text] [Related]
20. The noise and impedance of microelectrodes. Mierzejewski M; Steins H; Kshirsagar P; Jones PD J Neural Eng; 2020 Oct; 17(5):052001. PubMed ID: 33055360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]