These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17947101)

  • 41. Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution.
    Lin SF; Wang CM; Ding TJ; Tsai YL; Yang TH; Chen WY; Chang JY
    Opt Express; 2012 Jun; 20(13):14584-95. PubMed ID: 22714520
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Imaging technique for the screening of protein-protein interactions using scattered light under surface plasmon resonance conditions.
    Savchenko A; Kashuba E; Kashuba V; Snopok B
    Anal Chem; 2007 Feb; 79(4):1349-55. PubMed ID: 17297933
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metamaterials for enhanced polarization conversion in plasmonic excitation.
    Feng L; Mizrahi A; Zamek S; Liu Z; Lomakin V; Fainman Y
    ACS Nano; 2011 Jun; 5(6):5100-6. PubMed ID: 21500845
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor.
    Manera MG; Ferreiro-Vila E; Garcia-Martin JM; Garcia-Martin A; Rella R
    Biosens Bioelectron; 2014 Aug; 58():114-20. PubMed ID: 24632137
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasmon waveguide resonance sensor using an Au-MgF2 structure.
    Zhou Y; Zhang P; He Y; Xu Z; Liu L; Ji Y; Ma H
    Appl Opt; 2014 Oct; 53(28):6344-50. PubMed ID: 25322217
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biosensing Based on Magneto-Optical Surface Plasmon Resonance.
    David S; Polonschii C; Gheorghiu M; Bratu D; Gheorghiu E
    Methods Mol Biol; 2017; 1571():73-88. PubMed ID: 28281250
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experimental characterization of optical nonlocality in metal-dielectric multilayer metamaterials.
    Sun L; Cheng F; Mathai CJ; Gangopadhyay S; Gao J; Yang X
    Opt Express; 2014 Sep; 22(19):22974-80. PubMed ID: 25321768
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design of ultra-sensitive biosensor applying surface plasmon resonance to a triangular resonator.
    Oh GY; Lee TK; Kim HS; Kim DG; Choi YW
    Opt Express; 2012 Aug; 20(17):19067-74. PubMed ID: 23038547
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surface plasmon effects induced by uncollimated emission of semiconductor microstructures.
    Lepage D; Dubowski JJ
    Opt Express; 2009 Jun; 17(12):10411-8. PubMed ID: 19506696
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmon guided modes in nanoparticle metamaterials.
    Sainidou R; de Abajo GF
    Opt Express; 2008 Mar; 16(7):4499-506. PubMed ID: 18542548
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress.
    Hoa XD; Kirk AG; Tabrizian M
    Biosens Bioelectron; 2007 Sep; 23(2):151-60. PubMed ID: 17716889
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification.
    Taguchi A; Hayazawa N; Saito Y; Ishitobi H; Tarun A; Kawata S
    Opt Express; 2009 Apr; 17(8):6509-18. PubMed ID: 19365475
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Angle-dependent resonance of localized and propagating surface plasmons in microhole arrays for enhanced biosensing.
    Live LS; Dhawan A; Gibson KF; Poirier-Richard HP; Graham D; Canva M; Vo-Dinh T; Masson JF
    Anal Bioanal Chem; 2012 Dec; 404(10):2859-68. PubMed ID: 22760504
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optical biosensor with dispersion compensation.
    Zong W; Thirstrup C; Sørensen MH; Pedersen HC
    Opt Lett; 2005 May; 30(10):1138-40. PubMed ID: 15943292
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deposition of functionalized polymer layers in surface plasmon resonance immunosensors by in-situ polymerization in the evanescent wave field.
    Chegel V; Whitcombe MJ; Turner NW; Piletsky SA
    Biosens Bioelectron; 2009 Jan; 24(5):1270-5. PubMed ID: 18789676
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Theory of enhanced optical transmission through a metallic nano-slit surrounded with asymmetric grooves under oblique incidence.
    Cai L; Li G; Xiao F; Wang Z; Xu A
    Opt Express; 2010 Sep; 18(19):19495-503. PubMed ID: 20940845
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Profile effect on the feasibility of extinction-based localized surface plasmon resonance biosensors with metallic nanowires.
    Byun KM; Kim SJ; Kim D
    Appl Opt; 2006 May; 45(14):3382-9. PubMed ID: 16676047
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sensitivity of ex situ and in situ spectral surface plasmon resonance sensors in the analysis of protein arrays.
    Yuk JS; Jung JW; Jung SH; Han JA; Kim YM; Ha KS
    Biosens Bioelectron; 2005 May; 20(11):2189-96. PubMed ID: 15797315
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes.
    Martijn de Sterke C; Dossou KB; White TP; Botten LC; McPhedran RC
    Opt Express; 2009 Sep; 17(20):17338-43. PubMed ID: 19907519
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient unidirectional ridge excitation of surface plasmons.
    Radko IP; Bozhevolnyi SI; Brucoli G; Martín-Moreno L; García-Vidal FJ; Boltasseva A
    Opt Express; 2009 Apr; 17(9):7228-32. PubMed ID: 19399099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.