These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 17947135)

  • 1. Single trial method for brain-computer interface.
    Funase A; Yagi T; Barros AK; Cichocki A; Takumi I
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5277-81. PubMed ID: 17947135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research for estimating direction of saccadic eye movements by single trial processing.
    Funase A; Hashimoto T; Yagi T; Barros AK; Cichocki A; Takumi I
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4723-6. PubMed ID: 18003060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global optimal constrained ICA and its application in extraction of movement related cortical potentials from single-trial EEG signals.
    Eilbeigi E; Setarehdan SK
    Comput Methods Programs Biomed; 2018 Nov; 166():155-169. PubMed ID: 30415714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of saccade-related EEG signal with saccade-related independent component.
    Funase A; Yagi T; Barros A; Cichocki A; Takumi I
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():7060-3. PubMed ID: 17281901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using temporally aligned event-related potentials for the investigation of attention shifts prior to and during saccades.
    Huber-Huber C; Ditye T; Marchante Fernández M; Ansorge U
    Neuropsychologia; 2016 Nov; 92():129-141. PubMed ID: 27059211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-computer interface combining eye saccade two-electrode EEG signals and voice cues to improve the maneuverability of wheelchair.
    Wang KJ; Zhang L; Luan B; Tung HW; Liu Q; Wei J; Sun M; Mao ZH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1073-1078. PubMed ID: 28813964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic artefact removal in a self-paced hybrid brain- computer interface system.
    Yong X; Fatourechi M; Ward RK; Birch GE
    J Neuroeng Rehabil; 2012 Jul; 9():50. PubMed ID: 22838499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG-Based Eye Movement Recognition Using Brain-Computer Interface and Random Forests.
    Antoniou E; Bozios P; Christou V; Tzimourta KD; Kalafatakis K; G Tsipouras M; Giannakeas N; Tzallas AT
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33801663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time ocular artifacts suppression from EEG signals using an unsupervised adaptive blind source separation.
    Shayegh F; Erfanian A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5269-72. PubMed ID: 17946689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting patterns of single-trial EEG using an adaptive learning algorithm.
    Lin CT; Wang YK; Fang CN; Yu YH; King JT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6642-5. PubMed ID: 26737816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A brain-computer interface method combined with eye tracking for 3D interaction.
    Lee EC; Woo JC; Kim JH; Whang M; Park KR
    J Neurosci Methods; 2010 Jul; 190(2):289-98. PubMed ID: 20580646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint Maximum Likelihood Time Delay Estimation of Unknown Event-Related Potential Signals for EEG Sensor Signal Quality Enhancement.
    Kim K; Lim SH; Lee J; Kang WS; Moon C; Choi JW
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27322267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fast and scalable framework for automated artifact recognition from EEG signals represented in scalp topographies of Independent Components.
    Placidi G; Cinque L; Polsinelli M
    Comput Biol Med; 2021 May; 132():104347. PubMed ID: 33799218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise estimation of human corticospinal excitability associated with the levels of motor imagery-related EEG desynchronization extracted by a locked-in amplifier algorithm.
    Takahashi K; Kato K; Mizuguchi N; Ushiba J
    J Neuroeng Rehabil; 2018 Nov; 15(1):93. PubMed ID: 30384845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An embedded implementation based on adaptive filter bank for brain-computer interface systems.
    Belwafi K; Romain O; Gannouni S; Ghaffari F; Djemal R; Ouni B
    J Neurosci Methods; 2018 Jul; 305():1-16. PubMed ID: 29738806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature extraction of mental task in BCI based on the method of approximate entropy.
    Wang L; Xu G; Wang J; Yang S; Yan W
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1941-4. PubMed ID: 18002363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autoregressive spectral analysis in Brain Computer Interface context.
    Bufalari S; Mattia D; Babiloni F; Mattiocco M; Marciani MG; Cincotti F
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3736-9. PubMed ID: 17945793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.