BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 17947319)

  • 21. LAHEDES: the LAGLIDADG homing endonuclease database and engineering server.
    Taylor GK; Petrucci LH; Lambert AR; Baxter SK; Jarjour J; Stoddard BL
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W110-6. PubMed ID: 22570419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel site-specific DNA endonucleases.
    Aggarwal AK; Wah DA
    Curr Opin Struct Biol; 1998 Feb; 8(1):19-25. PubMed ID: 9519292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystallographic analyses illustrate significant plasticity and efficient recoding of meganuclease target specificity.
    Werther R; Hallinan JP; Lambert AR; Havens K; Pogson M; Jarjour J; Galizi R; Windbichler N; Crisanti A; Nolan T; Stoddard BL
    Nucleic Acids Res; 2017 Aug; 45(14):8621-8634. PubMed ID: 28637173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational redesign of endonuclease DNA binding and cleavage specificity.
    Ashworth J; Havranek JJ; Duarte CM; Sussman D; Monnat RJ; Stoddard BL; Baker D
    Nature; 2006 Jun; 441(7093):656-9. PubMed ID: 16738662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recognition of a common rDNA target site in archaea and eukarya by analogous LAGLIDADG and His-Cys box homing endonucleases.
    Nomura N; Nomura Y; Sussman D; Klein D; Stoddard BL
    Nucleic Acids Res; 2008 Dec; 36(22):6988-98. PubMed ID: 18984620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From monomeric to homodimeric endonucleases and back: engineering novel specificity of LAGLIDADG enzymes.
    Silva GH; Belfort M; Wende W; Pingoud A
    J Mol Biol; 2006 Aug; 361(4):744-54. PubMed ID: 16872628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA deformation energy as an indirect recognition mechanism in protein-DNA interactions.
    Aeling KA; Steffen NR; Johnson M; Hatfield GW; Lathrop RH; Senear DF
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(1):117-25. PubMed ID: 17277419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chimeras of the homing endonuclease PI-SceI and the homologous Candida tropicalis intein: a study to explore the possibility of exchanging DNA-binding modules to obtain highly specific endonucleases with altered specificity.
    Steuer S; Pingoud V; Pingoud A; Wende W
    Chembiochem; 2004 Feb; 5(2):206-13. PubMed ID: 14760742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Forces driving the binding of homeodomains to DNA.
    Dragan AI; Li Z; Makeyeva EN; Milgotina EI; Liu Y; Crane-Robinson C; Privalov PL
    Biochemistry; 2006 Jan; 45(1):141-51. PubMed ID: 16388589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility.
    Chevalier BS; Stoddard BL
    Nucleic Acids Res; 2001 Sep; 29(18):3757-74. PubMed ID: 11557808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermodynamics of specific and non-specific DNA binding by the c-Myb DNA-binding domain.
    Oda M; Furukawa K; Ogata K; Sarai A; Nakamura H
    J Mol Biol; 1998 Feb; 276(3):571-90. PubMed ID: 9551098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Free-energy component analysis of 40 protein-DNA complexes: a consensus view on the thermodynamics of binding at the molecular level.
    Jayaram B; McConnell K; Dixit SB; Das A; Beveridge DL
    J Comput Chem; 2002 Jan; 23(1):1-14. PubMed ID: 11913374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Progressive engineering of a homing endonuclease genome editing reagent for the murine X-linked immunodeficiency locus.
    Wang Y; Khan IF; Boissel S; Jarjour J; Pangallo J; Thyme S; Baker D; Scharenberg AM; Rawlings DJ
    Nucleic Acids Res; 2014 Jun; 42(10):6463-75. PubMed ID: 24682825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Homing endonuclease structure and function.
    Stoddard BL
    Q Rev Biophys; 2005 Feb; 38(1):49-95. PubMed ID: 16336743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of the intein homing endonuclease PI-SceI bound to its recognition sequence.
    Moure CM; Gimble FS; Quiocho FA
    Nat Struct Biol; 2002 Oct; 9(10):764-70. PubMed ID: 12219083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA binding and cleavage selectivity of the Escherichia coli DNA G:T-mismatch endonuclease (vsr protein).
    Gonzalez-Nicieza R; Turner DP; Connolly BA
    J Mol Biol; 2001 Jul; 310(3):501-8. PubMed ID: 11439018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and functional analysis of the homing endonuclease PI-sceI by limited proteolytic cleavage and molecular cloning of partial digestion products.
    Pingoud V; Grindl W; Wende W; Thole H; Pingoud A
    Biochemistry; 1998 Jun; 37(22):8233-43. PubMed ID: 9609720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Mu repressor-DNA complex contains an immobilized 'wing' within the minor groove.
    Wojciak JM; Iwahara J; Clubb RT
    Nat Struct Biol; 2001 Jan; 8(1):84-90. PubMed ID: 11135677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets.
    Arnould S; Chames P; Perez C; Lacroix E; Duclert A; Epinat JC; Stricher F; Petit AS; Patin A; Guillier S; Rolland S; Prieto J; Blanco FJ; Bravo J; Montoya G; Serrano L; Duchateau P; Pâques F
    J Mol Biol; 2006 Jan; 355(3):443-58. PubMed ID: 16310802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. What drives proteins into the major or minor grooves of DNA?
    Privalov PL; Dragan AI; Crane-Robinson C; Breslauer KJ; Remeta DP; Minetti CA
    J Mol Biol; 2007 Jan; 365(1):1-9. PubMed ID: 17055530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.