These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 17947501)

  • 1. Apparent latent heat of evaporation from clothing: attenuation and "heat pipe" effects.
    Havenith G; Richards MG; Wang X; Bröde P; Candas V; den Hartog E; Holmér I; Kuklane K; Meinander H; Nocker W
    J Appl Physiol (1985); 2008 Jan; 104(1):142-9. PubMed ID: 17947501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin.
    Havenith G; Bröde P; den Hartog E; Kuklane K; Holmer I; Rossi RM; Richards M; Farnworth B; Wang X
    J Appl Physiol (1985); 2013 Mar; 114(6):778-85. PubMed ID: 23329814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protection against cold in prehospital care: evaporative heat loss reduction by wet clothing removal or the addition of a vapor barrier--a thermal manikin study.
    Henriksson O; Lundgren P; Kuklane K; Holmér I; Naredi P; Bjornstig U
    Prehosp Disaster Med; 2012 Feb; 27(1):53-8. PubMed ID: 22445055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method?
    Wang F; Gao C; Kuklane K; Holmér I
    Ann Occup Hyg; 2011 Aug; 55(7):775-83. PubMed ID: 21669906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction of the heat loss method for calculating clothing real evaporative resistance.
    Wang F; Zhang C; Lu Y
    J Therm Biol; 2015 Aug; 52():45-51. PubMed ID: 26267497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurements of clothing evaporative resistance using a sweating thermal manikin: an overview.
    Wang F
    Ind Health; 2017 Dec; 55(6):473-484. PubMed ID: 28566566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical and physiological integration of proper clothing for exercise.
    Gonzalez RR
    Exerc Sport Sci Rev; 1987; 15():261-95. PubMed ID: 3297725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r).
    Lu Y; Wang F; Peng H; Shi W; Song G
    Int J Biometeorol; 2016 Apr; 60(4):481-8. PubMed ID: 26150329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-evaporative effects of a wet mid layer on heat transfer through protective clothing.
    Bröde P; Havenith G; Wang X; Candas V; den Hartog EA; Griefahn B; Holmér I; Kuklane K; Meinander H; Nocker W; Richards M
    Eur J Appl Physiol; 2008 Sep; 104(2):341-9. PubMed ID: 18084775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of posture positions on the evaporative resistance and thermal insulation of clothing.
    Wu YS; Fan JT; Yu W
    Ergonomics; 2011 Mar; 54(3):301-13. PubMed ID: 21390960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous derivation of clothing-specific heat exchange coefficients.
    Kenney WL; Mikita DJ; Havenith G; Puhl SM; Crosby P
    Med Sci Sports Exerc; 1993 Feb; 25(2):283-9. PubMed ID: 8450734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment.
    Wang F; Annaheim S; Morrissey M; Rossi RM
    Scand J Med Sci Sports; 2014 Jun; 24(3):e129-39. PubMed ID: 24033668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occupational needs and evaluation methods for cold protective clothing.
    Anttonen H
    Arctic Med Res; 1993; 52 Suppl 9():1-76. PubMed ID: 8048995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dry and wet heat transfer through clothing dependent on the clothing properties under cold conditions.
    Richards MG; Rossi R; Meinander H; Broede P; Candas V; den Hartog E; Holmér I; Nocker W; Havenith G
    Int J Occup Saf Ergon; 2008; 14(1):69-76. PubMed ID: 18394328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clothing, assessment and effects on thermophysiological responses of man working in humid heat.
    Candas V; Hoeft A
    Ergonomics; 1995 Jan; 38(1):115-27. PubMed ID: 7875116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot studies of vapor transfer through breathable outerwear by simulating sweating in the cold.
    Kaufman WC; Bothe DJ; Pozos RS
    Aviat Space Environ Med; 1987 Aug; 58(8):812-6. PubMed ID: 3632543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of temperature difference between manikin and wet fabric skin surfaces on clothing evaporative resistance: how much error is there?
    Wang F; Kuklane K; Gao C; Holmér I
    Int J Biometeorol; 2012 Jan; 56(1):177-82. PubMed ID: 21318453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanded prediction equations of human sweat loss and water needs.
    Gonzalez RR; Cheuvront SN; Montain SJ; Goodman DA; Blanchard LA; Berglund LG; Sawka MN
    J Appl Physiol (1985); 2009 Aug; 107(2):379-88. PubMed ID: 19407259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of metabolic rate and ambient vapour pressure on heat strain in protective clothing.
    McLellan TM; Pope JI; Cain JB; Cheung SS
    Eur J Appl Physiol Occup Physiol; 1996; 74(6):518-27. PubMed ID: 8971493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of fabric thickness and material on apparent 'wet' conductive thermal resistance of knitted fabric 'skin' on sweating manikins.
    Wang F; Lai D; Shi W; Fu M
    J Therm Biol; 2017 Dec; 70(Pt A):69-76. PubMed ID: 29074028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.