BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17948794)

  • 1. Rates of arsenopyrite oxidation by oxygen and Fe(III) at pH 1.8-12.6 and 15-45 degrees C.
    Yu Y; Zhu Y; Gao Z; Gammons CH; Li D
    Environ Sci Technol; 2007 Sep; 41(18):6460-4. PubMed ID: 17948794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic oxidation of dissolved As(III) and arsenopyrite in the presence of oxygen: Formation and function of reactive oxygen species.
    Hong J; Liu L; Ning Z; Liu C; Qiu G
    Water Res; 2021 Sep; 202():117416. PubMed ID: 34284121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies.
    Basu A; Schreiber ME
    J Hazard Mater; 2013 Nov; 262():896-904. PubMed ID: 23312782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic release from the abiotic oxidation of arsenopyrite under the impact of waterborne H2O2: a SEM and XPS study.
    Ma Y; Qin Y; Zheng B; Zhang L; Zhao Y
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1381-90. PubMed ID: 26362642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioarsenate formation upon dissolution of orpiment and arsenopyrite.
    Suess E; Planer-Friedrich B
    Chemosphere; 2012 Nov; 89(11):1390-8. PubMed ID: 22771176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous oxidation of Fe(II) on ferric oxide at neutral pH and a low partial pressure of O2.
    Park U; Dempsey BA
    Environ Sci Technol; 2005 Sep; 39(17):6494-500. PubMed ID: 16190204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization.
    Zhang DR; Chen HR; Xia JL; Nie ZY; Fan XL; Liu HC; Zheng L; Zhang LJ; Yang HY
    J Hazard Mater; 2020 Feb; 384():121359. PubMed ID: 31635821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobilisation and bioavailability of arsenic around mesothermal gold deposits in a semiarid environment, Otago, New Zealand.
    Craw D; Pacheco L
    ScientificWorldJournal; 2002 Feb; 2():308-19. PubMed ID: 12806018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate-accelerated photochemical oxidation of arsenopyrite in acidic systems under oxic conditions: Formation and function of schwertmannite.
    Hong J; Liu L; Zhang Z; Xia X; Yang L; Ning Z; Liu C; Qiu G
    J Hazard Mater; 2022 Jul; 433():128716. PubMed ID: 35358816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel insights into the kinetics and mechanism of arsenopyrite bio-dissolution enhanced by pyrite.
    Zhang DR; Zhang RY; Zhu XT; Kong WB; Cao C; Zheng L; Pakostova E
    J Hazard Mater; 2024 May; 470():134193. PubMed ID: 38569341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoinduced oxidation of arsenite to arsenate in the presence of goethite.
    Bhandari N; Reeder RJ; Strongin DR
    Environ Sci Technol; 2012 Aug; 46(15):8044-51. PubMed ID: 22703473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of rainwater-borne hydrogen peroxide in the release of arsenic from arsenopyrite.
    Ma Y; Qin Y; Lin C
    Chemosphere; 2014 May; 103():349-53. PubMed ID: 24315179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans.
    Makita M; Esperón M; Pereyra B; López A; Orrantia E
    BMC Biotechnol; 2004 Oct; 4():22. PubMed ID: 15482595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenopyrite weathering in acidic water: Humic acid affection and arsenic transformation.
    Wang S; Zheng K; Li H; Feng X; Wang L; Liu Q
    Water Res; 2021 Apr; 194():116917. PubMed ID: 33609907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles.
    Hu Q; Kim DY; Yang W; Yang L; Meng Y; Zhang L; Mao HK
    Nature; 2016 Jun; 534(7606):241-4. PubMed ID: 27279220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing of arsenopyritic gold concentrates by partial bio-oxidation followed by bioreduction.
    Hol A; van der Weijden RD; Van Weert G; Kondos P; Buisman CJ
    Environ Sci Technol; 2011 Aug; 45(15):6316-21. PubMed ID: 21707056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms.
    Deng S; Gu G; Wu Z; Xu X
    Chemosphere; 2017 Oct; 185():403-411. PubMed ID: 28710989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Release and fate of As mobilized via bio-oxidation of arsenopyrite in acid mine drainage: Importance of As/Fe/S speciation and As(III) immobilization.
    Chen HR; Zhang DR; Li Q; Nie ZY; Pakostova E
    Water Res; 2022 Sep; 223():118957. PubMed ID: 35970106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red mud regulates arsenic fate at acidic pH via regulating arsenopyrite bio-oxidation and S, Fe, Al, Si speciation transformation.
    Zhang DR; Chen HR; Xia JL; Nie ZY; Zhang RY; Schippers A; Shu WS; Qian LX
    Water Res; 2021 Sep; 203():117539. PubMed ID: 34407485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.