These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 17948818)

  • 1. Inactivation of bacteriophages via photosensitization of fullerol nanoparticles.
    Badireddy AR; Hotze EM; Chellam S; Alvarez P; Wiesner MR
    Environ Sci Technol; 2007 Sep; 41(18):6627-32. PubMed ID: 17948818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of bacteriophage inactivation via singlet oxygen generation in UV illuminated fullerol suspensions.
    Hotze EM; Badireddy AR; Chellam S; Wiesner MR
    Environ Sci Technol; 2009 Sep; 43(17):6639-45. PubMed ID: 19764229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water.
    Hotze EM; Labille J; Alvarez P; Wiesner MR
    Environ Sci Technol; 2008 Jun; 42(11):4175-80. PubMed ID: 18589984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fullerol-sensitized production of reactive oxygen species in aqueous solution.
    Pickering KD; Wiesner MR
    Environ Sci Technol; 2005 Mar; 39(5):1359-65. PubMed ID: 15787378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the oxidation of organic compounds by aqueous suspensions of photosensitized hydroxylated-C60 fullerene aggregates.
    Chae SR; Hotze EM; Wiesner MR
    Environ Sci Technol; 2009 Aug; 43(16):6208-13. PubMed ID: 19746715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing reactive oxygen generation and bacterial inactivation by a zerovalent iron-fullerene nano-composite device at neutral pH under UV-A illumination.
    Erdim E; Badireddy AR; Wiesner MR
    J Hazard Mater; 2015; 283():80-8. PubMed ID: 25262481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2.
    Yamakoshi Y; Umezawa N; Ryu A; Arakane K; Miyata N; Goda Y; Masumizu T; Nagano T
    J Am Chem Soc; 2003 Oct; 125(42):12803-9. PubMed ID: 14558828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteriophage inactivation by UV-A illuminated fullerenes: role of nanoparticle-virus association and biological targets.
    Badireddy AR; Budarz JF; Chellam S; Wiesner MR
    Environ Sci Technol; 2012 Jun; 46(11):5963-70. PubMed ID: 22545948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production and consumption of reactive oxygen species by fullerenes.
    Kong L; Zepp RG
    Environ Toxicol Chem; 2012 Jan; 31(1):136-43. PubMed ID: 21994164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosensitization with anticancer agents. 20--EPR studies on the photodynamic action of phleichrome: formation of semiquinone radical and activated oxygen species on illumination with visible light.
    Diwu Z; Lown JW
    Free Radic Biol Med; 1995 Feb; 18(2):357-63. PubMed ID: 7538091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles.
    Brunet L; Lyon DY; Hotze EM; Alvarez PJ; Wiesner MR
    Environ Sci Technol; 2009 Jun; 43(12):4355-60. PubMed ID: 19603646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoirradiation of dehydropyrrolizidine alkaloids--formation of reactive oxygen species and induction of lipid peroxidation.
    Zhao Y; Xia Q; Yin JJ; Lin G; Fu PP
    Toxicol Lett; 2011 Sep; 205(3):302-9. PubMed ID: 21723383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems.
    Lee I; Mackeyev Y; Cho M; Li D; Kim JH; Wilson LJ; Alvarez PJ
    Environ Sci Technol; 2009 Sep; 43(17):6604-10. PubMed ID: 19764224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UVA photoirradiation of anhydroretinol--formation of singlet oxygen and superoxide.
    Yin JJ; Xia Q; Fu PP
    Toxicol Ind Health; 2007 Nov; 23(10):625-31. PubMed ID: 18717521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photophysical properties and singlet oxygen generation efficiencies of water-soluble fullerene nanoparticles.
    Stasheuski AS; Galievsky VA; Stupak AP; Dzhagarov BM; Choi MJ; Chung BH; Jeong JY
    Photochem Photobiol; 2014; 90(5):997-1003. PubMed ID: 24893622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism.
    Mroz P; Pawlak A; Satti M; Lee H; Wharton T; Gali H; Sarna T; Hamblin MR
    Free Radic Biol Med; 2007 Sep; 43(5):711-9. PubMed ID: 17664135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental implications and applications of carbon nanomaterials in water treatment.
    Chae SR; Hotze EM; Badireddy AR; Lin S; Kim JO; Wiesner MR
    Water Sci Technol; 2013; 67(11):2582-6. PubMed ID: 23752392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of photodynamic activity of C60/2-hydroxypropyl-β-cyclodextrin nanoparticles.
    Iohara D; Hiratsuka M; Hirayama F; Takeshita K; Motoyama K; Arima H; Uekama K
    J Pharm Sci; 2012 Sep; 101(9):3390-7. PubMed ID: 22228093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepwise Growth of Fullerene Nanoparticles through Guest Exchange of γ-Cyclodextrin Complexes in Water.
    Sugikawa K; Kozawa K; Ueda M; Ikeda A
    Chemistry; 2017 Oct; 23(55):13704-13710. PubMed ID: 28741840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of localized charges in dopamine-modified TiO(2) and their effect on the formation of reactive oxygen species.
    Dimitrijevic NM; Rozhkova E; Rajh T
    J Am Chem Soc; 2009 Mar; 131(8):2893-9. PubMed ID: 19209860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.