These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 17948818)
21. Antioxidative fullerol promotes osteogenesis of human adipose-derived stem cells. Yang X; Li CJ; Wan Y; Smith P; Shang G; Cui Q Int J Nanomedicine; 2014; 9():4023-31. PubMed ID: 25187705 [TBL] [Abstract][Full Text] [Related]
22. Photosensitization with anticancer agents 19. EPR studies of photodynamic action of calphostin C: formation of semiquinone radical and activated oxygen on illumination with visible light. Diwu Z; Lown JW Free Radic Biol Med; 1994 May; 16(5):645-52. PubMed ID: 7517910 [TBL] [Abstract][Full Text] [Related]
23. UVA photoirradiation of retinyl palmitate--formation of singlet oxygen and superoxide, and their role in induction of lipid peroxidation. Xia Q; Yin JJ; Cherng SH; Wamer WG; Boudreau M; Howard PC; Fu PP Toxicol Lett; 2006 May; 163(1):30-43. PubMed ID: 16384671 [TBL] [Abstract][Full Text] [Related]
24. Effects of carbon nanomaterials fullerene C₆₀ and fullerol C₆₀(OH)₁₈₋₂₂ on gills of fish Cyprinus carpio (Cyprinidae) exposed to ultraviolet radiation. Socoowski Britto R; Garcia ML; Martins da Rocha A; Flores JA; Pinheiro MV; Monserrat JM; Ferreira JL Aquat Toxicol; 2012 Jun; 114-115():80-7. PubMed ID: 22417764 [TBL] [Abstract][Full Text] [Related]
25. Visible Light Sensitized Production of Hydroxyl Radicals Using Fullerol as an Electron-Transfer Mediator. Lim J; Kim H; Alvarez PJ; Lee J; Choi W Environ Sci Technol; 2016 Oct; 50(19):10545-10553. PubMed ID: 27588691 [TBL] [Abstract][Full Text] [Related]
26. Heterogeneities in fullerene nanoparticle aggregates affecting reactivity, bioactivity, and transport. Chae SR; Badireddy AR; Farner Budarz J; Lin S; Xiao Y; Therezien M; Wiesner MR ACS Nano; 2010 Sep; 4(9):5011-8. PubMed ID: 20707347 [TBL] [Abstract][Full Text] [Related]
27. Difference in phototoxicity of cyclodextrin complexed fullerene [(gamma-CyD)2/C60] and its aggregated derivatives toward human lens epithelial cells. Zhao B; He YY; Chignell CF; Yin JJ; Andley U; Roberts JE Chem Res Toxicol; 2009 Apr; 22(4):660-7. PubMed ID: 19281132 [TBL] [Abstract][Full Text] [Related]
28. Photo-irradiation of Aloe vera by UVA--formation of free radicals, singlet oxygen, superoxide, and induction of lipid peroxidation. Xia Q; Yin JJ; Fu PP; Boudreau MD Toxicol Lett; 2007 Jan; 168(2):165-75. PubMed ID: 17197137 [TBL] [Abstract][Full Text] [Related]
29. Mechanism of C60 photoreactivity in water: fate of triplet state and radical anion and production of reactive oxygen species. Lee J; Yamakoshi Y; Hughes JB; Kim JH Environ Sci Technol; 2008 May; 42(9):3459-64. PubMed ID: 18522134 [TBL] [Abstract][Full Text] [Related]
30. Phototoxicity and cytotoxicity of fullerol in human retinal pigment epithelial cells. Wielgus AR; Zhao B; Chignell CF; Hu DN; Roberts JE Toxicol Appl Pharmacol; 2010 Jan; 242(1):79-90. PubMed ID: 19800903 [TBL] [Abstract][Full Text] [Related]
31. Norovirus and MS2 inactivation kinetics of UV-A and UV-B with and without TiO2. Lee JE; Ko G Water Res; 2013 Oct; 47(15):5607-13. PubMed ID: 23871257 [TBL] [Abstract][Full Text] [Related]
32. Photoinduced superoxide radical anion and singlet oxygen generation in the presence of novel selenadiazoloquinolones (an EPR Study). Barbieriková Z; Bella M; Kučerák J; Milata V; Jantová S; Dvoranová D; Veselá M; Staško A; Brezová V Photochem Photobiol; 2011; 87(1):32-44. PubMed ID: 21073477 [TBL] [Abstract][Full Text] [Related]
33. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells. Roberts JE; Wielgus AR; Boyes WK; Andley U; Chignell CF Toxicol Appl Pharmacol; 2008 Apr; 228(1):49-58. PubMed ID: 18234258 [TBL] [Abstract][Full Text] [Related]
34. Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation. Mamane H; Shemer H; Linden KG J Hazard Mater; 2007 Jul; 146(3):479-86. PubMed ID: 17532124 [TBL] [Abstract][Full Text] [Related]
35. Photo-induced reactive oxygen species generation by different water-soluble fullerenes (C) and their cytotoxicity in human keratinocytes. Zhao B; Bilski PJ; He YY; Feng L; Chignell CF Photochem Photobiol; 2008; 84(5):1215-23. PubMed ID: 18399919 [TBL] [Abstract][Full Text] [Related]
36. Are silicone-supported [C60]-fullerenes an alternative to Ru(II) polypyridyls for photodynamic solar water disinfection? Manjón F; Santana-Magaña M; García-Fresnadillo D; Orellana G Photochem Photobiol Sci; 2014 Feb; 13(2):397-406. PubMed ID: 24395285 [TBL] [Abstract][Full Text] [Related]
37. Reduction of hydroxylated fullerene (fullerol) in water by zinc: reaction and hemiketal product characterization. Wu J; Alemany LB; Li W; Petrie L; Welker C; Fortner JD Environ Sci Technol; 2014 Jul; 48(13):7384-92. PubMed ID: 24892381 [TBL] [Abstract][Full Text] [Related]
38. Photocatalytic inactivation of viruses using titanium dioxide nanoparticles and low-pressure UV light. Gerrity D; Ryu H; Crittenden J; Abbaszadegan M J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Sep; 43(11):1261-70. PubMed ID: 18642149 [TBL] [Abstract][Full Text] [Related]
39. Antimicrobial photodynamic inactivation with decacationic functionalized fullerenes: oxygen-independent photokilling in presence of azide and new mechanistic insights. Yin R; Wang M; Huang YY; Landi G; Vecchio D; Chiang LY; Hamblin MR Free Radic Biol Med; 2015 Feb; 79():14-27. PubMed ID: 25451642 [TBL] [Abstract][Full Text] [Related]
40. Comparative photochemical reactivity of spherical and tubular fullerene nanoparticles in water under ultraviolet (UV) irradiation. Chae SR; Watanabe Y; Wiesner MR Water Res; 2011 Jan; 45(1):308-14. PubMed ID: 20708771 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]