These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 17948917)
1. A local sensitivity analysis approach to longitudinal non-Gaussian data with non-ignorable dropout. Xie H Stat Med; 2008 Jul; 27(16):3155-77. PubMed ID: 17948917 [TBL] [Abstract][Full Text] [Related]
2. An index of local sensitivity to non-ignorability for multivariate longitudinal mixed data with potential non-random dropout. Mahabadi SE; Ganjali M Stat Med; 2010 Jul; 29(17):1779-92. PubMed ID: 20658547 [TBL] [Abstract][Full Text] [Related]
3. Bayesian inference from incomplete longitudinal data: a simple method to quantify sensitivity to nonignorable dropout. Xie H Stat Med; 2009 Sep; 28(22):2725-47. PubMed ID: 19572257 [TBL] [Abstract][Full Text] [Related]
4. An index of local sensitivity to nonignorable drop-out in longitudinal modelling. Ma G; Troxel AB; Heitjan DF Stat Med; 2005 Jul; 24(14):2129-50. PubMed ID: 15909292 [TBL] [Abstract][Full Text] [Related]
5. Conditional mixed models adjusting for non-ignorable drop-out with administrative censoring in longitudinal studies. Li J; Schluchter MD Stat Med; 2004 Nov; 23(22):3489-503. PubMed ID: 15505888 [TBL] [Abstract][Full Text] [Related]
6. Assessing missing data assumptions in longitudinal studies: an example using a smoking cessation trial. Yang X; Shoptaw S Drug Alcohol Depend; 2005 Mar; 77(3):213-25. PubMed ID: 15734221 [TBL] [Abstract][Full Text] [Related]
7. Marginalized transition models for longitudinal binary data with ignorable and non-ignorable drop-out. Kurland BF; Heagerty PJ Stat Med; 2004 Sep; 23(17):2673-95. PubMed ID: 15316952 [TBL] [Abstract][Full Text] [Related]
8. An autoregressive linear mixed effects model for the analysis of longitudinal data which include dropouts and show profiles approaching asymptotes. Funatogawa T; Funatogawa I; Takeuchi M Stat Med; 2008 Dec; 27(30):6351-66. PubMed ID: 18767204 [TBL] [Abstract][Full Text] [Related]
9. Missing covariates in longitudinal data with informative dropouts: bias analysis and inference. Roy J; Lin X Biometrics; 2005 Sep; 61(3):837-46. PubMed ID: 16135036 [TBL] [Abstract][Full Text] [Related]
10. Random effects and latent processes approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data. Albert PS; Follmann DA Stat Methods Med Res; 2007 Oct; 16(5):417-39. PubMed ID: 17656452 [TBL] [Abstract][Full Text] [Related]
11. Modelling placebo response in depression trials using a longitudinal model with informative dropout. Gomeni R; Lavergne A; Merlo-Pich E Eur J Pharm Sci; 2009 Jan; 36(1):4-10. PubMed ID: 19041717 [TBL] [Abstract][Full Text] [Related]
12. An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs. Fitzmaurice GM; Laird NM; Shneyer L Stat Med; 2001 Apr; 20(7):1009-21. PubMed ID: 11276032 [TBL] [Abstract][Full Text] [Related]
13. Multiple imputation compared with some informative dropout procedures in the estimation and comparison of rates of change in longitudinal clinical trials with dropouts. Ali MW; Siddiqui O J Biopharm Stat; 2000 May; 10(2):165-81. PubMed ID: 10803723 [TBL] [Abstract][Full Text] [Related]
14. On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out. Demirtas H; Schafer JL Stat Med; 2003 Aug; 22(16):2553-75. PubMed ID: 12898544 [TBL] [Abstract][Full Text] [Related]
15. Sensitivity analysis of longitudinal binary data with non-monotone missing values. Minini P; Chavance M Biostatistics; 2004 Oct; 5(4):531-44. PubMed ID: 15475417 [TBL] [Abstract][Full Text] [Related]
16. Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out. Demirtas H Stat Med; 2005 Aug; 24(15):2345-63. PubMed ID: 15977286 [TBL] [Abstract][Full Text] [Related]
17. Comparison of data analysis strategies for intent-to-treat analysis in pre-test-post-test designs with substantial dropout rates. Salim A; Mackinnon A; Christensen H; Griffiths K Psychiatry Res; 2008 Sep; 160(3):335-45. PubMed ID: 18718673 [TBL] [Abstract][Full Text] [Related]
18. Comparison of imputation and modelling methods in the analysis of a physical activity trial with missing outcomes. Wood AM; White IR; Hillsdon M; Carpenter J Int J Epidemiol; 2005 Feb; 34(1):89-99. PubMed ID: 15333619 [TBL] [Abstract][Full Text] [Related]
19. Accounting for dropout bias using mixed-effects models. Mallinckrodt CH; Clark WS; David SR J Biopharm Stat; 2001; 11(1-2):9-21. PubMed ID: 11459446 [TBL] [Abstract][Full Text] [Related]
20. Semiparametric models for missing covariate and response data in regression models. Chen Q; Ibrahim JG Biometrics; 2006 Mar; 62(1):177-84. PubMed ID: 16542244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]